Showing posts with label 原子. Show all posts
Showing posts with label 原子. Show all posts

Saturday, August 22, 2020

量子纠缠背后的故事(十一):索末菲的原子

 玻尔回到丹麦后没多久就接到卢瑟福的来信。卢瑟福聊家常似地告诉玻尔,达尔文要离开了。他们在登广告招新人,但都不尽人意。他希望能找到一个具备独创能力的年轻人。玻尔立刻就领会了导师没有明说的言下之意。

玻尔这时在哥本哈根大学担任讲师,职责主要是给医科学生上普通物理课。他觉得很无聊,正在争取一个教授席位。虽然有着卢瑟福强力的推荐信和本校同行的一致支持,这机会一时半会还是可望不可即。

于是,他请了一年假,在1914年9月携同妻子兼贴身秘书玛格丽特再度来到曼切斯特,继续在卢瑟福实验室中任职。那里却已经物是人非。

半年前,卢瑟福因为其显著的成就获得英国国王晋封骑士爵位。一战开始后,他的精力集中在用声纳探测潜水艇的绝密项目上,无暇再顾及纯科学研究。他的实验室也面目全非。那些来自各地的年轻人全部失去踪影。盖革正在为德国的毒气战效力。达尔文已经参军,在物理学家布拉格(Lawrence Bragg)领导下研究通过监听敌方开炮噪音确定其火炮阵地的方位,卓有成效。

战争爆发时,莫斯利正在澳大利亚开会、度假。他当即设法回国,辞去已得到的牛津大学职位,义不容辞地“插队”入伍担任通讯兵。1915年8月10日,他在土耳其战场上用电话传递讯息时被狙击手击中头部,时年27岁。

他的牺牲在科学界引起轰动。卢瑟福在《自然》杂志上发表长篇讣告,称誉莫斯利为“极少见的天生的实验物理学家”。在历数莫斯利的贡献之后,卢瑟福痛心地指出,不加甄别地将这样的人才送上前线充当普通士兵是国家悲剧(可能受此影响,英国政府后来修改了有关政策)。大西洋彼岸的密立根也撰写悼词,悲愤交加地指出:仅此一例损失就足以证明这场战争的荒唐和罪恶。

1914和1915年的诺贝尔物理学奖相继授给了德国的劳厄、英国的布拉格和他的父亲。他们都是因为X射线散射实验的成果得奖。率先用X射线验证玻尔原子模型的莫斯利在逝世前已被公认会加入这个行列。

丹麦是中立国,玻尔对这一切只能袖手旁观,不被允许参与任何与军事有关的行动。他主动承担了更多的教学任务,尽力而为地继续研究他的原子。在他的新模型问世之后,卢瑟福、索末菲等人都曾经好奇、期待地看他是否能再进一步,解释光谱中更深一层的奥秘,即所谓的“精细结构(fine structure)”。


早在1887年,通过精密测量否定了以太存在的迈克尔逊和莫雷同时也报告,他们仪器的精度让他们看到氢原子那些光谱线其实不尽是一条条的线。如果仔细地分辨,一条谱线其实是由两条挤在一起的细线组成。因为他们的实验,迈克尔逊在1907年获得诺贝尔奖,是美国第一个获奖者。

稍后,荷兰的塞曼(Pieter Zeeman)又有了新发现:如果在磁场中测量,一些原子的光谱线会“分裂”成两条或更多的细线。他的导师洛伦兹很快根据经典电子理论做出了解释。他们俩因为这个“塞曼效应”分享了1902年诺贝尔奖。

洛伦兹的理论只适用于磁场的作用,无法解释氢原子谱线本身的精细结构。它同时也表明电场对原子的作用太弱,不会出现类似的效果。十多年后,斯塔克才在1913年发现电场中原子的光谱线其实也会分裂,与洛伦兹理论不符。斯塔克后来在1919年因为这个“斯塔克效应”得到诺贝尔奖。

显然,玻尔的原子模型不能只满足于明显的谱线系列,也需要能解释这些精细结构的来源,超越洛伦兹的经典理论。但这次,玻尔一筹莫展,始终没能找到头绪。在他的模型中,光谱线的频率来自两个轨道间的能量差。这些轨道彼此分离,井然有序。他无法想象怎么可能出现异常接近又稍微有区别的两个或更多频率。

两年过去了。虽然他只请了一年假,1916年时玻尔还在曼切斯特。这时家乡传来好消息:哥本哈根大学终于为他专设了一个理论物理教授席位。于是,他和妻子打道回府。没多久,他收到了索末菲从慕尼黑寄来的论文。

索末菲那年已经48岁,开始进入老一代教授的行列。在没有等到玻尔的进展后,他自己找到了答案。

为了在数学上简化,玻尔的电子轨道是标准的圆形。它只有一个参数:半径。索末菲认为像行星一样,电子也可以在一定的椭圆轨道上公转,保持与圆形轨道同样的角动量而满足玻尔的条件。这样的椭圆轨道并不多,可以一一找出。椭圆有两个参数:除了半径大小,还有一个偏心率描述其偏离圆形的程度。偏心率为零的椭圆就是圆形;偏心率越大,椭圆的形状就变得越扁平。

电相互作用与万有引力有一个共同的特点。在椭圆轨道上运行的电子或行星有着同样的能量,与相应的圆形轨道无异。但索末菲意识到电子与行星不同。它的公转速度接近光速,需要考虑狭义相对论效应。不同偏心率的椭圆轨道上电子的速度会有所变化,相对论修正也就略有差异。这样,即使同样大小的椭圆轨道上电子的能量也会有细微的差别。当一个电子分别从这些轨道上向另一个轨道跃迁时,它经历的能量差也会不同,发射的光子频率也随之有细微偏差。这就是氢原子谱线中的精细结构。

果然,索末菲的计算精确地给出了氢原子光谱的测量数据。他还因此发现“精细结构常数”,其重要性要在几十年后才引起广泛注意。

慕尼黑大学的索末菲纪念头像,墓志铭是他的精细结构常数。


太阳系的所有行星轨道都在同一个平面上,这可能是源自早期旋转星云的动力学。索末菲觉得电子绕原子核的轨道没有这个来源,因而没有必要局限于一个平面。它们可以是“立体”的,有不同的空间取向。因为对称性,同样的椭圆轨道在不同的取向上有着相同的能量,不会自然地导致光谱线分裂。但如果外加一个磁场或电场,这个对称性就会被破坏。因为不同取向的轨道上电子与外加电场、磁场方向的角度不同,会出现能量上的差异。这样,他又完美地解释了塞曼效应和斯塔克效应。

玻尔那简单的原子模型在索末菲手上一下子变得丰富多彩。原来只用一个整数表示的轨道、能级现在需要三个整数,分别标识轨道的大小、偏心率和角度。这也正是电子轨道运动的三个不同自由度。三个整数值可以完全确定一个电子的轨道,它们被称为电子轨道的“量子数(quantum number)”。

解释氢原子精细结构和塞曼、斯塔克效应的成功极大地彰显了玻尔原子模型的威力。在那之后,这个奇葩的新理论被广为接受,不再被怀疑。它经常被正式地称呼为“玻尔-索末菲模型”,有时甚至被直接叫做“索末菲模型”。


在柏林的爱因斯坦也收到了索末菲寄来的论文。他立即兴奋地回信表示拜读这篇论文是他职业生涯“最为激动人心的经历”。他从未曾想到狭义相对论竟然会在肉眼不可见的微观原子世界中发挥作用,与量子的概念相结合而完满地解释现实的测量结果。

索末菲来信中还请教是否还需要考虑广义相对论修正,爱因斯坦告知他那可以完全忽略不计。尽管如此,爱因斯坦还是一眼看出了索末菲模型中的另一个不足之处。他立即在1917年5月发表论文充实、推广了索末菲的理论基础。这篇在当时未能引人注意的论文在50年后才被重新发现,成为“量子混沌理论(quantum chaotic theory)”的开端。

第一次世界大战的四年是独自躲在阁楼书房中的爱因斯坦离开专利局后最富有成就的时光。光是在1915年11月至1917年2月的一年多,他就发表了15篇科学论文,还出版了一本关于相对论的专著。他不仅完成了广义相对论,还提出了描述整个宇宙的物理模型,开创了现代宇宙学(参阅《宇宙膨胀背后的故事(之一):爱因斯坦无中生有的宇宙常数》)。在量子领域,他则第一次明确光子同时拥有能量和动量的粒子特性,利用玻尔的原子模型从原理出发推导出普朗克定律,并打开了现代光学的新视野。

在这期间,他还与在苏黎士的玛丽奇就孩子和金钱问题在通信中不断地争吵。

随着战争后期的节节失利,德国境内经济崩溃,出现全民饥荒。大多数人只能靠少量土豆、萝卜度日。爱因斯坦在施瓦本农村的亲戚和中立国瑞士的朋友经常给他邮寄食物接济,没有直接遭受饥饿的威胁。但他单身的日子过得非常糟糕。在埋头研究物理之余,他的生活没有一点规律。1917年2月,38岁的爱因斯坦终于在剧烈的腹痛中病倒不起,体重在两个月内急剧减轻了25公斤,生命堪危。他自己觉得大概是癌症,对已经及时地完成了相对论倍感欣慰。

所幸他得的并非不治之症,而是严重的肝、胃溃疡和结石。艾尔莎挺身而出,自作主张将他搬到自己隔壁的一间公寓,每天精心烹调,为他提供遵医嘱但可口的食物。经过漫长的调养,爱因斯坦终于逐渐恢复了健康。

他与妻子的笔墨官司却依然旷日持久。疲惫的爱因斯坦抱怨不知道国家的战争和个人的婚姻哪一个能先结束。他没预料到答案会是几乎同时。

1918年11月11日,欧洲实现了全面停火。12月23日,爱因斯坦在柏林的法庭上坦承自己婚内出轨,与表姐同居了四年半,得以完成离婚的法律手续。为了得到玛丽奇的首肯,他不仅答应支付自己工资的70%作为赡养费,还许诺自己将来若得到诺贝尔奖,奖金会全部转交给玛丽奇和孩子们(当时诺贝尔奖的金额大致是他那不菲的年薪17倍,而且是瑞典克朗,不是会在恶性通货膨胀下变得一钱不值的德国马克)。

好不容易摆脱了婚姻桎梏的爱因斯坦并不愿意再度给自己套上枷锁,但他还是禁不住艾尔莎和她父母的压力,仅仅半年后就与她再结连理——虽然离婚协议规定他两年内不得再婚。(艾尔莎20岁的大女儿担任爱因斯坦的秘书。她在一封给自己情人的私信里绘声绘色地叙述了爱因斯坦如何在与她妈妈结婚前先向她求过婚。她的故事也许并非空穴来风,但迄今只是孤证。)

战败后的德国千疮百孔,失去了六百万人口和大量的领土。能斯特的两个儿子都在沙场捐躯。普朗克的大儿子战死,二儿子在法国被俘虏而幸存。哈伯的妻子因为忧郁症和丈夫在化学武器中的角色举枪自杀(他们的一个儿子后来也自杀了)。哈伯在那之后继续为国效忠,倒还在战争结束时赢得1918年诺贝尔化学奖。


作为中立国,丹麦没有经受战争的祸害。随着欧洲大陆战事的平息,玻尔已经不满足于手中的大学教授席位。他有着一个更大的梦想。

虽然卢瑟福只比玻尔大14岁,玻尔不仅尊卢瑟福为恩师,还视他如若慈父。卢瑟福在曼切斯特的实验室是玻尔最为仰慕的圣地。那里永远有着一群你来我往、朝气蓬勃的年轻人。他们中有来自显赫学者家庭的达尔文,有传统的贵族之后,也有来自生活底层的蓝领子弟。他们有着不同的国家、文化背景,相异的贫富、地位差距。但在那个实验室里,在卢瑟福高亢的嗓门、爽朗的大笑中,他们彼此没有区别、隔阂。大家和谐相处,齐心协力,一心一意地钻研科学的奥秘,寻求下一个突破。

传统上,德国和英国是欧洲乃至世界的科学中心,地处北欧的丹麦还属于化外之地。玻尔雄心勃勃地要改变这个局面,在家乡仿造偶像的方式建立一个同样的科学乐园。回国之后,他一直为此积极奔走游说。

索末菲的论文来得正是时候。玻尔读后与爱因斯坦一样地欢欣鼓舞,而他的激动更进一步。索末菲的成功彰显了玻尔原子模型的价值,令他的国际声望又再上了一层楼。借着这股强劲的东风,玻尔成功地获得学校的批准。他进而说服市政府提供地盘,并赢得嘉士伯基金会的大力资助,可以大兴土木修建一个“哥本哈根大学理论物理研究所”。

为了他的梦想,玻尔费尽了心血。他甚至不辞劳苦,亲自设计研究所的大楼。与他口授论文的过程一样,他时常地改变主意,数易其稿,以至于建筑工程拖延了一年多。直到1921年初才正式投入使用。

玻尔研究所大楼。


他设计的大楼共有四层,虽然不是很大但五脏俱全,兼顾生活和工作。玻尔和玛格丽特已经有了两个孩子,一家四口住在楼内的一间公寓。顶楼上还保留着几个小公寓供短期来访的宾客使用。其它房间则分别作为办公室、实验室,外加一个小巧的图书馆。楼内还设有一张乒乓球台——酷爱运动的玻尔也是乒乓好手。他会经常在那里大显身手,轻而易举地击败几乎所有的年轻人。

最为著名的还是一个阶梯教室式的会议室。之后的几十年里,无数知名、尚未成名或未能出名的青年物理学家将在那里陈述自己的新理论、新创见,接受玻尔等专家的检阅、评判。

这个新大楼的正式名称从一开始就被人忽略,而是被广泛、亲切地称作“玻尔研究所”(1965年,作为对已经去世的玻尔诞生80周年纪念,研究所正式更名为“尼尔斯·玻尔研究所”)。


早在研究所落成之前,玻尔已经在1919年底邀请索末菲来哥本哈根访问、讲学。这一看似理所当然的简单举动在当时却有着特殊的意义。

1919年,玻尔(右)陪同来访的索末菲游览丹麦名胜。


深受战争祸害的欧洲诸国在战后都对德国采取了孤立、封锁政策。即使在学术界,德国科学家与外界的联系也基本上被切断。作为中立国成员,玻尔没有情感负担,更是以协助恢复科学交流为己任。这样,索末菲成为战后最早接到国外讲学邀请的德国科学家之一。

这个动向也引起了爱因斯坦的注意。他早已心仪这位从未谋面、在量子理论后来居上的丹麦青年。于是他向普朗克提议邀请玻尔访问柏林,打开国际联络通道。

1920年4月27日,因为激动、紧张而有点惴惴不安的玻尔乘火车来到柏林,看到站台上普朗克和爱因斯坦——量子的始作俑者——正微笑着向他招手。


(待续)


Sunday, August 9, 2020

量子纠缠背后的故事(之九):玻尔的原子

 基尔霍夫在19世纪已经知道他那个完全由温度决定、普适的黑体辐射只适用于固态、液态或密度非常高的气态物体。如果将同样的材料磨制成稀疏的微粒在火焰中燃烧,它们产生的辐射迥然不同。

他在海德堡大学的同伴、化学家本生(Robert Bunsen)为此发明了“本生灯(Bunsen burner)”。他们在火焰中观察到的光谱不再是每个频率上都有一定光强的连续分布,而是一片黑暗:几乎所有频率上都没有光,只在某几个特定频率上存在纤细、明亮的谱线。这些谱线所在的频率随不同元素而异,但每种元素都有着自己的特征频率,犹如人的指纹。

在那之前,德国的玻璃工匠弗劳恩霍夫(Joseph von Fraunhofer)已经发现棱镜分离出的太阳光谱中有一些细微、频率位置固定的暗线。基尔霍夫发觉那些暗线与他和本生发现的亮线一一对应:它们是同一个指纹的明暗两面。他意识到这是因为元素不仅会发出特定频率的光,也会吸收同样频率的光。

光谱分析立即成为化学家最有力的工具之一,可以非常方便地分析物质的内在成分。天文学家也紧跟而上,用光谱探测那些可望不可及的太阳、恒星的元素组成,还能通过多普勒效应测量恒星的移动速度(参阅《宇宙膨胀背后的故事(之四):察颜观色识星移》)。

物理学家却始终摸不着头脑。无论物体处于什么状态,其内部的运动都会有着不同的速度、频率,因此所发射、吸收的电磁波有着黑体辐射那样的连续光谱。无法想象它们会对某些特定的频率情有独钟,只发射、吸收那些频率的电磁波而对其它频率视而不见。

在19世纪末,黑体辐射由于与工业化生产息息相关成为物理学的一大热门。相应的分立光谱却因为无从解读,几乎没人提及。这也是另一朵被开尔文勋爵忽视的乌云。


与当时的年轻物理学家一样,玻尔对元素分立的光谱只有泛泛的了解,从来没有细究过。尼科尔森是从天文观测出发开始研究这一问题。那篇论文给玻尔带来新的启示,让他意识到那个光谱与黑体辐射的截然不同:它不是源于宏观物体中的热运动,而是直接来自微观的原子本身,与原子的内部结构息息相关。

玻尔于是沿着尼科尔森已有的思路构造出一个全新的原子模型。他的着眼点是最简单的氢原子。

氢在元素周期表中排第一位,那时也已经由卢瑟福证实它的原子序数是一,即只有一个电子。相应地,氢原子核(那时还没有质子的概念)带有一个正电荷。按照卢瑟福的想象,这个电子会绕着原子核公转。

作为最简单的模型,玻尔假设电子的轨道是标准的圆形。这样的轨道只需要一个参数:半径。一旦给定半径,就可以简单地计算出电子的能量、角动量等物理参数。当然,半径可大可小,可以是任意的数值。这样的电子轨道有无穷多个。

玻尔采用了尼科尔森的主意,只选取电子的角动量恰好是普朗克常数整数倍的作为“允许”的轨道,其它所有轨道都被“禁止”。这样,电子只能在那极少数允许的轨道上运行,别无选择。

同时,他规定在这些轨道上运动的电子不会发生任何电磁辐射,也就不会有能量损失,可以稳定、永恒地运行。就这样,卢瑟福原子的不稳定性便被一笔勾销,不复存在。

他正忙着构造这个新的原子世界时,一位大学同学从哥廷根大学留学回来。那位研究光谱学的老同学听了他这番描述,好奇地问道,你这样能解释氢原子光谱的巴尔默系列吗?

玻尔压根不知道那巴尔默系列是啥。


巴尔默(Johann Balmer)是19世纪中叶瑞士一所女子中学的普通老师,本不会为人所知。但他酷爱琢磨各种与数字有关的规律。一个同事见他闲着无聊,挑逗他去寻找氢原子光谱线的规律。那时,物理学家已经辨认出氢原子的四条谱线,并相当精确地测量出它们的波长。那四个波长的数值看起来彼此毫无关联,是随机分布。年届花甲的巴尔默仔细推敲,居然找出一个数学公式将四个数字联系了起来。

当然,用一个相当复杂的公式凑出四个数据点不是难事。巴尔默依据他的公式还推断氢原子另外还有一条谱线。他当时不知道那条谱线已经被找到,完全符合他预测的数值。那五条谱线因此一并被命名为巴尔默系列。

不仅如此,巴尔默还指出这不是氢原子唯一的谱线系列,另外还会有两个系列存在。但因为那些系列不在可见光波动,而分别在紫外、红外波段,它们直到20世纪初——巴尔默去世很久之后——才被陆续发现、证实。

后来,物理学家里德伯(Johannes Rydberg)将巴尔默的公式改写成另一个形式。他将波长改作频率——波长的倒数。这样,巴尔默公式看起来稍微简单一点:每条谱线的频率可以表示为一个常数乘以两个整数平方的倒数之差。

这依然是一个很奇怪的公式。那个叫做里德伯常数的数值完全没有来源,而那“两个整数平方的倒数之差”更是莫名其妙。这个公式为什么能够精确地推导出氢原子的光谱线,依然是不解之谜。

经过老同学的提醒,玻尔一看到这个里德伯公式立即恍然大悟。

在他的模型中,被允许的轨道如同一个梯子的一系列横档。与爬梯子的人一样,电子只能处在某一个横档上,不能处于两个横档之间的虚空。当电子处于某个轨道上时,它的角动量是普朗克常数的整数倍,能量则与那个整数的平方成反比。

于是,“两个整数平方的倒数之差”正好相应于两个轨道之间的能量差别。按照普朗克的能量子关系,这个能量差可以换算成电磁波的频率。他立即做了推算,果然发现他的模型推导出了那个谁都不知道来历的里德伯常数:它是一个由电子质量、电荷、光速等已知物理参数加上普朗克常数的一个奇妙组合。

这样,玻尔又发现了一条新规则:电子可以在被允许的轨道之间“跳跃”,就像人上下梯子时改换所踩的横档。当电子从一个能量高的轨道跳到能量低的轨道时,会将剩余的能量以普朗克能量子的形式释放成电磁波。反之,从低能量轨道跳到高能量轨道时,电子会相应地吸收一个同样频率的能量子。

玻尔的氢原子模型示意图。红点是原子核,蓝色同心圆是由整数标度的允许轨道,它们之间的能量差形成不同的辐射光谱系列(黑色为巴尔默系列),数字是各谱线的波长。

这个过程因此满足能量的守恒,也直截了当地解释了基尔霍夫、本生的明亮谱线和弗劳恩霍夫的暗谱线。

只是,他也几乎完全彻底地背叛了麦克斯韦电磁理论。他的原子模型基于一系列没有根据的新规则:电子在允许的轨道上运动时不会产生辐射;它们永远不能踏足这些轨道之外的空间;它们却又能够在不同轨道之间跳跃,跳跃时会发射或吸收一定频率的电磁波。

玻尔清楚他没法解释这一切,尤其是电子在不同轨道之间的跳跃。因为物理学中没有任何理论能描述这种跳跃,他只好强调那是某种一蹴而就的瞬时变异——“量子跃迁”。除了发射或吸收了电磁波,量子跃迁没有任何可描述的中间过程。


1913年3月初,玻尔将论文稿寄给曼切斯特的卢瑟福,请求他推荐发表。那时英国的学术刊物规定小字辈的论文必须由老资格教授转交才能发表,也属于一种专家审稿。

卢瑟福很快回了信。他对玻尔的这个新原子模型很感兴趣,但实在搞不懂其中的物理机制。他问道,如果一个电子处在高能量的轨道上,下面有几个低能量的轨道,它如何决定往哪个轨道上跳?在跳出去那一瞬间,它知道应该在哪个地方停下吗?

玻尔当然不可能回答这样的问题。卢瑟福也明白,这是一个非常超前的理论,会有许多无法解释的地方,就像他自己那个不可能稳定的原子模型一样。他们都很清楚,原子是稳定的,原子核、电子是存在的,原子会发射、吸收特定频率的电磁波。这些都是实验已经确定的事实。在经典理论无法解释的情况下,抛弃或至少绕过理论,创立新的物理规则,是普朗克、爱因斯坦已经开辟的道路。玻尔正是在试图迈出下一步。

所以,卢瑟福没有挑剔,爽快地同意为玻尔提交论文。他还主动提出可以帮助修改、润色稿件中差强人意的英语。大概还意犹未尽,卢瑟福告诉玻尔他的论文篇幅太长。按照英国传统,科技论文讲究言简意赅,不宜有太多的言辞累赘。玻尔的这个稿件应该能删减掉一半。“大概你不会介意我以自己的判断力为你做些删节吧?”

这最后的一句话才把玻尔吓得几乎魂飞魄散。


玻尔从小不善言辞,尤其疏于写作。从很小时开始,他就依赖于宠爱她的母亲。做作业时,他喜欢自己口授,由妈妈记笔记交差。

大学期间参加那次科学竞赛时,他父亲注意到他整晚整晚地在实验室测量这测量那,眼看期限要到了也不愿意动笔写论文。他父亲只得强行将他赶出实验室,关到乡下别墅专心写论文。那一次,他拉上弟弟为他笔记,好歹赶在截止之前交了卷。

玻尔从那时起就养成了习惯,思考问题时不断地踱步,口中念念有词,由母亲或弟弟记下,整理成文。他的硕士、博士论文都是母亲这样一遍又一遍地打字而成。没有了这样的拐棍,他独自在英国的那一年甚是难受,也没有完成一篇正式的论文。好在他很快回家,由新婚的妻子玛格丽特接替了母亲的职责,成为他贴身的全职秘书,即使是在蜜月中也不例外。

他也不是事先打好腹稿再按部就班地口授出来,而是天马行空想到哪是哪。这样,每篇论文都是一个耗时的大工程,每一句话、每个单词都要反复推敲,一改再改。据他自己回忆,他的博士论文至少有过14个不同版本。(一次,他弟弟看到他案头有一封给朋友的信,便好心要顺道帮他邮寄。玻尔立即夺回,说那只是第三稿,还需要再修改几遍才行。)

所以,当玻尔看到卢瑟福毛遂自荐要对他这得来不易的劳动成果大刀阔斧时,他感到了莫大的威胁——即使对方是他最尊敬的导师。这时他已经又做了一番修改,当然篇幅不仅没有缩减,反而还变得更长了。他急忙给卢瑟福回信,表明将立即启程前往英国面议。

玻尔也不是第一次遭遇这个麻烦。当初他到卡文迪许留学时曾极力争取在英国正式发表他的博士论文,最终未能如愿。主要原因就是编辑要求他大幅删节论文的篇幅。

当玻尔终于敲响卢瑟福的家门时,卢瑟福立即置家中的访客不顾,师徒俩躲进了小书房。随后的几天里,他们每天晚上都在争执。玻尔倔犟地为他每一个词句辩护,寸土不让。直到“表现出了天使般耐心”(玻尔后来的描述)的卢瑟福筋疲力尽缴械投降。

1913年7月,玻尔的论文《关于原子和分子的构成(On the Constitution of Atoms and Molecules)》在英国的《哲学杂志》上发表。这篇逃过卢瑟福剪刀的文章有25页,还只是他要连续发表的三部曲之第一篇。作为标准的“玻尔式”论文,文中只有20来个方程式,其余都是洋洋洒洒——卢瑟福眼中重复多余——的文字叙述。

玻尔1913年7月发表的原子结构论文,其脚注标明是通过卢瑟福提交。

两个月后,玻尔得以在英国科学促进会年会上第一次公开讲解他的论文。那次会议济济一堂,汤姆森、卢瑟福、金斯等人均出席,洛伦兹、居里夫人也远道而来,就连70高龄的瑞利男爵也到了场。

这些大人物对玻尔的新理论无所适从。瑞利绅士般地表示,上了70岁的老家伙不应该再在新理论上胡乱插嘴。他私底下实在无法认同,觉得玻尔在耍数学游戏,不可能是物理。汤姆森指出人为地选取特定的电子轨道没有根据,也完全没有必要。只有金斯比较开通,他指出玻尔的模型在解释光谱线上的成功已经表明了其价值。

其实,玻尔新出炉的理论在会议之前还得到了一个新的证实。他研究的是只有一个电子的氢原子。当有两个电子的氦原子失去其中一个电子时,剩下的氦离子也等同于氢原子,只是原子核的电荷、质量不同。玻尔的模型可以同样地计算氦离子应有的光谱线,他指出那就是哈佛天文学家皮克林(Edward Pickering,关于他和他的“后宫”,参阅《宇宙膨胀背后的故事(之六):在哈佛的后宫中丈量宇宙》)已经在星光中测量到的一个谱线系列。会前,卢瑟福手下的年轻人在实验室中证实了那的确是氦离子的光谱,证明玻尔对氢原子光谱的诠释不是瞎猫撞上死老鼠的侥幸。

即便如此,他这个新理论还是很难被接受。在海峡对面的欧洲大陆,地位正在急剧上升的劳厄坚持在轨道上运动的电子必须产生辐射,因为那是麦克斯韦理论的根基。埃伦菲斯特则向洛伦兹抱怨这样的理论让他绝望,意欲放弃物理学。

爱因斯坦在一次会议上听到朋友转述玻尔的新理论。他第一反应是这不可能,因为他也曾有过这个思路,但发现是条死路。当他接着听到氦离子光谱的结果时,不由瞪大了眼珠:“那这就是最伟大的发现之一。”


索尔维在1911年出资举办了物理学精英会议后意犹未尽,两年后又召开了第二次会议。参加者的名单没有太多变化,但增加了老将汤姆森和新秀劳厄。这次会议的主题是“物质的结构”,依然由洛伦兹主持。

汤姆森报告了他那个布丁模型的新进展。洛伦兹对他的老调重弹很不耐烦。他当场打断了汤姆森的演讲,指出他的模型与经典物理完全合拍。现在已经清楚地知道经典理论必然会导致瑞利的紫外灾难。要想完整地解释辐射问题——洛伦兹断言——必须违反经典物理。

卢瑟福这次也有了发言机会,介绍了他自己的模型。然而,真正背叛了经典物理的玻尔还没有被邀请的资格,他的新模型没能在会上亮相。

但玻尔还是不断地接到好消息。他曾与卢瑟福实验室中的小青年莫斯利(Henry Moseley)谈论过X射线问题。玻尔觉得他的原子模型能够解释X射线的来源:那是原子低能量轨道上的电子被外力打跑后高能量轨道上电子跳跃下来填补空位时发射的电磁波。因为轨道之间能量相差悬殊而有了频率非常高的X光。

勤奋的莫斯利夜以继日地在实验室里努力,在1913年底果然证实了玻尔的猜想,还顺带着发现了元素周期表上几个缺漏的新元素。

几个月后柏林大学的两个年轻人弗兰克(James Franck)和赫兹(Gustav Hertz,证实电磁波那个赫兹的侄子)又通过电子与水银蒸汽的碰撞实验发现水银原子的能量不连续,有着分立的数值——正像是玻尔那梯子的一根根横档。玻尔随即证实他们测量的数值与他模型的预测一致。

这个实验不仅证实玻尔原子模型的能量阶梯——“能级”——结构,还第一次观察到电子的动能与相应光辐射频率的关系,为能量子概念提供了直接证据。爱因斯坦在听了弗兰克的讲解后惊艳不已:“可爱得让人想哭!(It's so lovely, it makes you cry!)”弗兰克和赫兹后来因此获得1925年诺贝尔奖。

带着这一个个新进展,玻尔在1914年7月来到德国,巡回推销他的原子模型。在哥廷根和慕尼黑大学,他分别见到年轻新秀波恩(Max Born)和已经逐渐成为老教授的索末菲。他们对他的理论都满怀疑惑,但在听取玻尔亲自讲解后对他有了更多的信心。两个教授那时都在潜心研究爱因斯坦的相对论,这时不约而同地鼓励自己的学生转向原子理论。

在学术讲演之后,玻尔和弟弟一起前往阿尔卑斯山开始他们计划已久的长途登山、远足之旅。很快,他们看到人们纷纷放弃度假赶着回家,报纸上的新闻也日益吃紧。他们也匆忙下山抢乘火车、轮渡回丹麦。途径柏林时,玻尔看到满街兴奋异常的人群,不由感叹:“对军事行动的激情是德国人根深蒂固的习俗。”

那天,德国向俄国宣战,第一次世界大战全面爆发。


(待续)


Monday, August 3, 2020

量子纠缠背后的故事(之八):卢瑟福原子的困境

1905年2月,当瑞士专利局的爱因斯坦开始陆续寄出他那几篇划时代的论文时,19岁的玻尔是哥本哈根大学二年级学生。他参加了一次全国性竞赛,赢得金奖。

丹麦也是一个偏僻所在,全国只有那一所正规的大学。玻尔的父亲是学校里很有名气的生理学教授,曾两次获得诺贝尔医学奖的提名。玻尔的母亲则是大家闺秀,她父亲是当地显赫的银行家、政客。他们的家庭属于丹麦最富裕阶层。玻尔从小在仆人、保姆簇拥的环境中长大,也频繁受到父亲众多知识界朋友的思想影响。

丹麦科学院每年组织一次大学生竞赛。那年的物理考题是根据瑞利男爵早年的一个设想测量液体的表面张力。玻尔得天独厚,利用父亲实验室的条件设计、进行了实验,赢得金质奖章。他所作的论文颇有价值,得以在英国的学术杂志上正式发表。

这个经历让他喜欢上了物理,毕业后继续在学校里唯一的物理教授指导下继续攻读硕士、博士学位。他博士论文的答辩时间之短创了历史记录,因为他导师承认整个丹麦还没有人——包括他自己——懂得玻尔所作的课题。

出于地理渊源,丹麦的优秀学子传统上会去德国留学镀金。玻尔的父亲当年是在莱比锡大学获得学位,弟弟也已经去了哥廷根大学。玻尔博士毕业时,他父亲不幸英年早逝,但已经帮助他获取了一项由嘉士伯啤酒公司——丹麦绝无仅有的国际级骄傲——提供的奖学金,可以出国游学一年。

玻尔选择的却是英国的剑桥。那里曾经有过牛顿和麦克斯韦,是物理学的圣地。那里还有他崇拜的汤姆森,现代电子理论的泰斗。

1911年9月,26岁的玻尔走进了已经大名鼎鼎的卡文迪许实验室。

他那篇在丹麦没人能懂的博士论文研究的是金属中的电子,分析了汤姆森、德鲁德、洛伦兹等人的理论及缺陷。他抵达后的第一件事便是抱着特意找人翻译成英文的博士论文去拜访汤姆森,用结结巴巴的英语介绍了自己的工作,并特意指着其中一页说:这里我发现了你的一个错误。

汤姆森那时已经55岁,不再年轻。他对这个外来小青年的唐突不以为忤,客气地收下了论文,许诺会抽时间阅读。

慕名而来的玻尔不知道汤姆森这时已经移情别恋。除了还专注于发展他的原子模型,汤姆森的注意力早从阴极射线的电子转向阳极射线——阴极射线管中反方向射出的带正电的离子。玻尔也被安排做这方面的实验,但他兴趣缺缺,还是用更多的时间琢磨他的电子理论。

时间在很快地流逝。他刚到时的兴奋没有能延续多久,因为他看到自己那篇论文在汤姆森堆满文件的桌子上积累灰尘,没有被翻动过。他也发现汤姆森整天忙于事务而无暇科研。那实验室也跟他一样有着一种英国绅士般的老气横秋。

玻尔的父亲虽然是德国大学出身,却对英国的文化一往情深,在剑桥很有一些学生、朋友。他们热情地接待了这个故友的孩子,让年轻的玻尔宾至如归。他在那里社交生活颇为丰富,还参加了当地的足球队。他同时也热衷于旁听汤姆森、金斯等人的物理课程,广泛阅读物理文献和英国文学著作。让他颇为烦恼的是他的英文还是太差,加上言语木纳的性格,他很难与人交流,尤其是他所尊敬的汤姆森。

11月初的一天,玻尔前往曼切斯特大学拜访那里一位曾经是他父亲学生的生理学教授。刚刚从索尔维会议回来的卢瑟福恰好过来串门。卢瑟福与这个不期而遇的小伙子一见如故,以他特有的大嗓门竹筒倒豆子般地介绍了他在会议上听到的新鲜、神奇的量子理论。

年底,卢瑟福作为老校友又回到卡文迪许,在晚宴上与年轻人打成一片。正处于事业巅峰的卢瑟福朝气蓬勃神采飞扬,在玻尔的眼里正是稳重、内敛的汤姆森之反面。很快,玻尔取得卢瑟福和汤姆森的同意,几个月后离开卡文迪许,转往曼切斯特学习新潮的放射性。


曼切斯特是随着工业革命崛起的蓝领重镇。那里为数不多的知识界人士也时常聚会交流科学问题。在卢瑟福去索尔维会议半年前的一次大会上,一个商人绘声绘色地回顾他如何在进口的香蕉包装中发现了蛇的一个新品种,得意洋洋地让听众传看了那条蛇。接下来发言的是卢瑟福。他没有什么可以展示,只能形象地描述:原子不是一个均匀的布丁,而是空空荡荡,中间有一个极小极小的核:“就像这么个大讲堂中间的一只苍蝇”。

通过α粒子的散射,卢瑟福和他的助手、学生们正在逐步认识原子的可能结构。他推断原子之中必须有一个带正电而质量高度集中的核,才会有足够的排斥力和动量将粒子反弹回来。所以,与汤姆森的布丁相反,他提出原子是由这么一个“原子核”和它外面的电子组成。原子核与电子之间与演讲大厅一样空空如也,因此绝大多数α粒子可以通行无阻。少量的粒子因为接近原子核被散射会偏离方向。只有极少数的倒霉蛋迎头撞上原子核被弹回。

原子模型与α粒子散射实验示意图。左框为汤姆森模型,所有粒子直线穿透金箔中的原子。右框为卢瑟福模型,少数粒子会遭遇原子核的大角度散射。

这个新的电子模型相当争气。卢瑟福据此计算出的散射结果与盖革等人测量的数据完全一致。原子核的存在因而可以确定无疑。

令他头疼的是原子核之外的电子。汤姆森的布丁将电子镶嵌在均匀分布的正电荷中间,可以达到平衡。卢瑟福把带负电的电子与带正电的原子核分开了,它们之间的吸引力会立刻让它们加速靠近而合并。当然,物理学家早就熟悉这个问题:太阳与行星之间存在万有引力,但行星可以通过围绕太阳公转而形成稳定的平衡态。电荷作用力与万有引力有着相同的数学形式,因此电子也可以有同样的轨道运动。早在卢瑟福提出原子核概念之前,就有人设想过一个类似土星环形状的原子模型。

然而,电磁相互作用却有着特殊的麻烦。如果电子在运动,就会按照麦克斯韦的理论发射电磁波而消耗能量。这样,电子的速度会越来越慢,轨道半径越来越小,很快会坠入原子核而不复存在。(其实,公转着的行星也同样会因为发射引力波而失去轨道稳定性,但那时引力波概念尚未出现。当然,引力波极其微弱,可以忽略不计。参阅《捕捉引力波背后的故事(之六):“外星人”来电中的引力波》。)

于是,电子无论是静止还是运动,卢瑟福都无法自圆其说。他的新原子模型不稳定、不可能存在,也就无法被物理学界接受。在随后的索尔维会议上,没有人提及他这个模型。


玻尔直到1912年4月才得以离开卡文迪许,搬到曼切斯特。他那一年的奖学金只剩下了四个月。虽然急于出成果,他在新实验室的生活也没有太多改变。白天,他上着一门由盖革等人教授的放射性测量基础课。晚上,他依然兢兢业业地琢磨他的金属电子理论问题。不过,受新环境的影响,他的注意力逐渐转向了放射性和原子问题。

卢瑟福之“接收”玻尔很令人不解。他不仅轻视物理学之外的科学,还尤其看不上理论物理学家。而玻尔显然更倾向于理论研究。但卢瑟福依然对他另眼相看:“玻尔不一样,他是踢足球的。”(大学期间,玻尔和弟弟都是当地有名的足球明星。玻尔是守门员。他后来成为数学家的弟弟是前锋,曾作为国家队员代表丹麦在1908年奥运会上赢得银牌。40年后,玻尔以卢瑟福命名的小儿子作为曲棍球员也代表丹麦参加了奥运会。)

玻尔的“不一样”很快就有了表现。他了解到卢瑟福、索迪等已经发现了多种多样的放射性元素,却很难合适地分门归类。因为它们中有许多互相之间非常相似,无法用化学方法分离。

道尔顿提出原子论时,区分不同原子的物理性质只有一个:原子量,也就是原子的重量。俄国的门捷列夫(Dmitri Mendeleev)后来发现元素的化学性质有一定的规律,制作出了元素周期表。表中的元素也是以原子量的大小排列,原子量不同的原子属于不同的元素。

玻尔在分析了新的数据后提出那些无法分离的其实是同一种元素,只是原子量不同。他认为元素的辨别不是原子量,而是其电子的数目。或相应地,原子核所带正电荷的数量。他兴冲冲地找卢瑟福报告,认为这是一个可以证明他那个原子模型的证据。卢瑟福却没有附和,告诫年轻的玻尔要谨慎,不能随意由不充足的实验数据做大结论。(毕竟,原子中的电子数目在那时还没有定论。汤姆森最初曾设想原子的质量来自电子,因此每一个原子都会有几千个电子。卢瑟福的散射实验否定了这个推测,逐渐确定原子的电子数目大致是原子量的一半。)

玻尔颇为自信。但在碰了几次壁后,不善言辞的他害怕惹恼了卢瑟福只好放弃了。

一年后,索迪独立地提出了同样的思想。因为不同原子量的原子可以属于同一个元素,在周期表中占据同一个位置,这个新概念叫做“同位素(isotope)”。周期表中的元素则改为由电子数目——“原子序数”——排列(有意思的是,最早提出原子序数概念的是一个业余物理爱好者,荷兰的律师Antonius van den Broek)。改写了元素周期表的索迪后来以此赢得诺贝尔化学奖。

玻尔没有气馁,对卢瑟福反而更为敬重。

卢瑟福的实验室里也还有着一位做理论的年轻人。他比玻尔还小两岁,有着一个显赫的大名:达尔文(Charles Galton Darwin)——进化论鼻祖、“真正的”达尔文(Charles Darwin)的孙子。他当时正在研究α粒子实验的另一面。

卢瑟福自己最关注的是那些被原子核散射、弹回的极少数粒子。他只需要考虑粒子与原子核的相互作用,原子核之外的电子可以忽略不计。达尔文则相反。他关心那绝大多数没有被散射、直线穿透金箔的粒子。它们穿越了原子中间的虚空,但不可避免地会受到外围电子的影响。他希望能通过这些粒子的能量损失来探测那些电子的分布。因为它们的路径离原子核比较远,这时可以忽略原子核的作用。

玻尔看到论文后立即就意识到达尔文的方法有漏洞。他向卢瑟福提出可以做一个更全面的研究,同时兼顾原子核和电子的作用,一并计算它们对α粒子的总体效应。他觉得这个问题不复杂,几天功夫就能完成。卢瑟福这次非常鼓励,特准他不用去实验室上班,专心在家做理论。

正是在这个时候玻尔才发现卢瑟福的新原子模型之根本不可能:他没法设计出一个稳定的原子核与电子和平共处的结构,也就无从计算它们共同对α粒子的作用。这显然不是一个几天之内能解决的问题。而他的时间也到期了。


1912年8月1日,玻尔在哥本哈根市政厅与等了他一年的女友玛格丽特(Margrethe Norlund)成婚,只花了两分钟完成手续。他这时已经摒弃宗教,正式退出了教会,也就没有举办传统的教堂婚礼。

他们原定于去挪威度蜜月。但玻尔临时变卦,拽着新娘子去了曼切斯特。在那里,他花了两个星期终于与卢瑟福完成α粒子吸收、散射论文的定稿。玻尔并不满意。那只是对达尔文工作的一点改进。在论文最后,他预告很快会另外发表专门探讨原子结构的新论文。在给卢瑟福留下一篇简短的笔记之后,他才与新婚妻子去苏格兰欢度剩下的两星期蜜月。

在曼切斯特的玻尔夫妇。

回到丹麦的玻尔虽然没有像爱因斯坦当年那样在职场处处碰壁,他的处境其实也强不了多少。那里的学术职务稀少,没有空缺。他只能在小学院里代课教授初级课程。在与卢瑟福的通信中,他不时抱怨没有时间继续研究原子结构,为不断的拖延道歉。

在离开曼切斯特之前,玻尔在原子结构上的确已经有了新的想法。在用太阳系作为原子的类比时,他发现一个不那么显然的区别:原子有一定的大小。

太阳系——或任何类似天体系统——中各个行星的轨道位置是随机的,来自最初形成时物质碰巧的分布。在太阳的引力场中,行星、彗星等的轨道可大可小。整个太阳系也就没有预先设定的大小。

当卢瑟福确定原子核的大小只是大会堂中一只苍蝇那么微不足道时,原子的大小只能由外围电子的轨道半径决定。然而,与万有引力类似,电荷作用只涉及到质量和电荷两个参数,它们无论如何组合不出一个长度单位。于是,电子与行星一样,轨道可以是任意的大小。如果现实中的原子有确定的尺寸,那必然来自电磁理论之外的物理规律。

这不是玻尔第一次发现经典理论的不完备。早在他那篇没人读过的博士论文中,他就曾提到传统的电子理论无法完全解释金属的导电、导热及磁性现象。但这时,他对新物理规律的来源已经有了更明确的认识。卢瑟福转述的索尔维会议见闻给他留下过深刻的印象:当经典理论走投无路时,只能打破旧的桎梏,像普朗克、爱因斯坦那样引进全新的规则——哪怕这新规则多么地不可思议。

普朗克引进的新规则是能量子的能量与频率成正比,二者之间的系数已经被称为普朗克常数。当玻尔把这个常数与原有的质量、电荷一起组合时,发现果然能够凑出一个长度单位。而且,这个长度与已知的原子大小非常接近。他非常兴奋:电子的轨道大小不随意,是由新的量子规律决定。(他所用的以物理量的单位发现物理性质的方法叫做“量纲分析(dimensional analysis)”。)

也是在这时,玻尔突然在文献中发现已经有一篇用同样的办法设计电子轨道的论文,作者是他认识的尼科尔森(John Nicholson)。并且,尼科尔森还更进了一步,将电子轨道运动的角动量与普朗克常数联系,认为只有角动量是普朗克常数整数倍的极少数轨道才是可行的(严格来说,是普朗克常数除以两倍圆周率的整数)。他把这个模型套用在天文观测中发现的日冕光谱上,似乎挺合拍。

尼科尔森是玻尔在卡文迪许实验室见到的众多年轻人之一。他比玻尔只大四岁,这时已经成为伦敦国王学院的数学教授。他也是在研究了索尔维会议的纪要之后提出了这个将电子轨道“量子化”的建议。他的论文发表在英国天文学会的月刊上,在物理学界没人注意。半年之后才被玻尔发现。玻尔大为惊愕。他印象中的尼科尔森的学术能力不堪恭维,没想到会突然有此一举。好在除了电子轨道这个要点,那篇论文的出发点和逻辑都相当混乱,没有可取之处。玻尔庆幸他还没有失去机会,正好可以从中去粗取精,继续构造自己更合理的原子模型。

尼科尔森的论文还给了玻尔另一个启示。能探究原子内部结构的不只是α粒子散射,还有现成的光谱数据。后者其实更为重要。

更迫切地,玻尔意识到还会有更多、比尼科尔森更强的人正在争分夺秒地研究原子的结构,随时都可能有重大突破。时不我待。


(待续)

Friday, December 30, 2016

“看”原子

自从英国物理学家卢瑟福(Ernest Rutherford)的散射试验确定了原子的存在和的基本组成后,人们开始处心积虑地试图直接“看到”原子的形状,甚至其内部结构。在卢瑟福的模型中,原子由一个极小的原子核和一些外围电子组成,原子核的大小在10-15米左右,除了通过散射实验能探测到它的存在以外,就当时乃至今天的科学技术都没有办法直接看到它们。但原子本身因为外围电子所占据的空间比原子核大得多,大约是在10-11或10-10米的数量级,也就是说比原子核大上一万倍或更多。通常原子的大小尺度由以瑞典物理学家Anders Jonas Ångström命名的长度单位“埃”来量度。一个埃是10-10米,正是原子的尺度。近年来,属于国际单位制的“纳米”越来越时髦,一个纳米是10埃,所以原子大小正好在纳米之下。随着科学技术的发展,纳米早已经不再是微不可及的尺寸了。

物理学家几乎立刻就知道卢瑟福的模型没法成立。如果带正电的原子核与带负电的电子在空间上分离,他们无法和平共处——正负电荷的吸引必然使得电子与原子核结合到一起。唯一可能是电子像行星那样围绕原子核转动,但运动中的电子会发出电磁辐射,从而逐渐损失能量无法保持其轨道。为了解决这个悖论,丹麦物理学家玻尔(Niels Bohr)提出了一个不伦不类的模型,毫无理由地硬性规定电子只能在固定的轨道中运行,运行中不辐射能量,而只在不同轨道间跃迁时才有辐射。这个模型完美地解释当时所测量到的一系列原子辐射数据,因此尽管其出发点很荒唐,还是被大家所接受。电子在轨道上运行的图像更是深入普通大众的人心。在上个世纪相当长的时间,那是一个几乎所有与电有关的图像。中国的中央电视台就长期使用一个带这个图像的标志。

玻尔原子模型的内在矛盾直到量子力学发展以后才得以解决。在量子物理中,电子不再是一个经典意义的粒子,也就谈不上沿着什么轨道运行。电子只是处于某个由波函数描述的量子态上,其波函数描述电子在原子核周围各处存在的几率。因此电子既不在某个点上,也不在某条轨道上,而是近乎均匀地散布在空间。这个分布状态被形象地称作“电子云”。这对习惯于经典物理中的粒子世界的人是非常匪夷所思。


为了探测微观世界,科学家们陆续发明了各种各样的显微镜。我们通常看东西的可见光波长在几百个纳米范围,可以通过显微镜看到诸如细菌、细胞等微小物体,但对于几十纳米以下的结构就无能为力了。可见光之外的X射线以及电子束等的波长能达到纳米级甚至更低,可以用来探测物体的内部结构。这一类的显微镜利用的是波的反射、折射或衍射原理,能够推算出固体、液体及大分子内部原子之间的距离和角度,从而勾画出原子的排列图像。但它们看不到原子本身。

早在1930年代,科学家就发现可以利用另一种方式来观察物体的表面。通常,物体中的电子被原子核的吸引力束缚,除非获得很强的能量无法逃逸。当它们在诸如阴极射线管那样的被加热下作为射线逃出时,它们获得的能量已大大超过了它们原来在物体中的能量,从而无法通过它们获取物体表面的信息。这样的电子发射为“热发射”,即用热能来激发电子超出逃逸的壁垒。

神奇的量子力学提供了另一种逃逸的可能,即电子可以在没有获得超出壁垒的能量的情况下也能逃出,这个现象叫做“量子隧道”,就像电子没有翻山却挖了一条隧道通过壁垒一样。这样“冷发射”中逃出来的电子能量比较低,被探测后还可以顺藤摸瓜地反推出它的来源。1936年,德国物理学家穆勒(Erwin Muller)利用这个原理发明了第一个场效应显微镜,在超高真空中通过电场引发金属微小表面上电子冷发射,然后通过探测电子的分布还原出金属表面电子的分布(严格地说是电子能量或“功函数”的分布)。因为逃出的不是自由电子,而是束缚在一个个原子核周围的电子,这样的分布恰好就是原子本身的分布。在场效应显微镜的成像上,“原子”是一个个模糊的亮点。1955年,已经搬到美国的穆勒进一步发明了场离子显微镜,直接使失去了电子的原子,即离子,逃逸出来被探测到。这样还原出来的影像便直接就是原子在表面所处的位置,在照片中可以清晰地看到一个又一个规则排列着的原子。因此,穆勒常被称之为第一个看到原子的人。

场离子显微镜下观察到的原子排列。
场效应和场离子显微镜都只能在极小的探针头上的表面看到原子。近几十年发展成熟的扫描隧道显微镜(STM)和激光制冷技术则对看到和操纵原子上产生了突飞猛进的飞跃。采用这样的技术,今天科学家们不但可以看到平面上原子排列的清晰图像,还可以动手搬动单一的原子,把它们放到人们愿意它们去的地方。IBM公司就曾经因为人工制作了一个由单个原子排列出的IBM标志而轰动一时。


不过,这样看到的原子还只是原子作为一个整体的自身。能不能看到原子的内部结构和那神秘的电子云呢?

2009年,乌克兰的科学家第一次成功地直接看到了原子内部电子云的结构。他们利用最新技术把单个的碳原子排成一列,然后用精度极高的场效应显微镜观测单一原子。他们得到了下面的图像:
这里的原子不再只是一个亮亮的斑点,而开始呈现出内部的结构。左边的图像是处于基态(S)的电子云,就像一个球一样完全对称。右边那一个则是第一激发态(P)的电子云,像一只哑铃那样有两个极点。这正是教科书里常见的理论计算出的电子云的形状,现在我们能直接“看到”它们了。

最近(2013年5月),科学家又获得了进一步的突破,他们利用原子力显微镜(扫描隧道显微镜的改进型)不但能看到石墨烯中原子周围的电子云,而且还观察到原子之间形成化学键的变化过程。他们获得的图像再一次表明量子力学所描述的电子云和化学键是极其真实的存在。

(2009年9月19日初稿,2013年5月31日补充)


科普