Tuesday, November 24, 2020

量子纠缠背后的故事(廿五):深藏幕后的神秘力量

还只有四五岁时,爱因斯坦有次生病,父亲给了他一个指南针玩耍。小小的爱因斯坦立刻着了迷。

成年后,他多次回顾那次经历,显然印象深刻。他记得,无论他如何极力地调整摆布,那小玩意里的指针总是顽固地指着一个方向,丝毫不为他所动。他回忆说那时他曾因之浑身颤抖冷汗淋漓。

虽然还处于懵懵懂懂的年龄,爱因斯坦也明白那指南针不会有自主意识。在它倔犟行为的背后,肯定深藏有某种力量在推动。


在早期人类的眼里,自然界充满了不可捉摸的神秘。尤其是当惊天动地的风暴、地震、洪水、海啸突如其来时,他们无法理解,只能将之归因于超自然的神力。中国人创造了玉皇大帝王母娘娘,还有翻云覆雨的龙王。希腊人则有着海神波塞冬(Poseidon)。他性情暴躁,一发怒就会掀起滔天的灾难。

海神波塞冬。

希腊历史记载中最早的哲人泰勒斯(Thales)对这个“解释”很不满意。如果波塞冬只是在某个角落大吼一声,遥远的地面就会发生震动,这中间太缺乏现实的联系。泰勒斯觉得地震不可能凭空发生。他设想人类居住的陆地下面其实是海洋,地面只是漂浮在水面上的巨大板块。当海浪汹涌引起陆地颠簸时,上面的人们就会感觉到地震的发生。

也许波塞冬的确还是在掌管着这一切的发生。但无论怎么生气,也无法仅仅凭着意念引发大地的震动。他只能先在地下的海洋中掀起风浪,推动起那上面的陆地板块,才能造成地震。

泰勒斯没有进一步解释波塞冬如何能在海洋中兴风作浪。他的理论只是在波塞冬的情绪发泄和地震之间增加了一个海洋作为中继的过渡。这个听起来似乎换汤不换药的小伎俩却标志着理性思维的一大突破。

当神话中的波塞冬无论是以脑子里的愤怒闪念、撕心裂肺的咆哮还是手中钢叉的狂野挥舞都无法远距离地引发地震,而必须通过现实的海洋推动陆地时,至少地震的发生有了一个切实的起因:海洋的波浪摇撼大地,造成后者的晃动。

这是一个直截了当的因果关系,不再带有超自然的神迹、魔力。那地下的海洋存在与否、是不是地震的真正起因,都可以现实地检验。相比之下,波塞冬的情绪、行为却只是一个虚无缥缈无可捉摸,既不可能证实也无法证否的因素。

水能载舟亦能覆舟,是因为水与舟之间有着直接的接触。水因此可以推动航船以及大地摇晃。同样地,当看到一根树枝在空中晃动时,理性的人不会像禅师那样去揣测那只是“心动”,也不会怀疑那是千百里外的某个人施放了气功。也许一只鸟刚从那树枝上飞走,或者一丝微风正好吹过。鸟或风碰到树枝,使之摇曳。

在希腊哲人的心目中,只有这种发生在同一个地点、通过直接的接触起作用的原因和结果才能构成实实在在、可验证的因果关系。这是因果律的“局域性(locality)”。

爱因斯坦在1927年索尔维会议上再度提起他的泡泡悖论,描述一颗光子或电子击中荧光屏某个地点时,其波函数会发生突然的坍塌,从一个非常大的半球面均匀分布变成只在那一个点存在的δ函数。他的本意就是要强调被击中的那个点和半球面上的其它部位距离上可以远隔万里。那个点上所发生的撞击事件不应该瞬时地影响到其它地点的波函数行为。如是真是那样,就会违背了局域性,是一种不能接受的“超距作用(action at a distance)”。


相传早在公元前中国就出现了“司南”,作为能帮助人们辨识方向的指南针。泰勒斯所在的希腊还没有那样的工具。但他们也已经知道自然界存在有磁石,可以不通过接触便让铁屑移动。如果使劲地摩擦琥珀,它也能在一定距离上让人毛发尽竖。

显然,这都属于违反了局域性的因果联系。泰勒斯他们百思不得其解。但与童年的爱因斯坦一样,他们不相信那是超距作用。在磁石、琥珀的背后肯定还藏着有未知的因素在起作用。

这个神秘的幕后黑手迟至19世纪才终于被英国的法拉第(Michael Faraday)揭穿。他通过实验发现磁石的周围存在磁场、摩擦后带电的琥珀周围存在电场。电场和磁场弥漫于空间,像泰勒斯的地下海洋一样成为磁石与铁屑、琥珀与头发之间的中介。那肉眼看不见的磁场和电场通过接触推动了铁屑和头发,并非跨越空间的超距作用。

当麦克斯韦将法拉第的发现总结、提升为系统的电磁学理论时,他更揭示出这个相互作用不仅没有跨越空间距离,也不具备跨越时间的瞬时效果。电磁作用是通过以光速运行的电磁波传递,在不同地点之间的传播需要有一定的时间差。

少年时的爱因斯坦在中学里学习了电磁学的基本知识,得以解开了童年时的困惑:是地球周围存在着的地磁场在暗中操纵着他的指南针,迫使那指针顽固地指向南北两极。那就是他当初怀疑过的深藏着的力量。

然而,那时也已经有了另外的超距作用。为了解释日月星辰的运动和苹果的掉落,牛顿早就发明了万有引力:任何两个物体之间都存在有引力作用。这个引力超越了时间和空间的障碍,无论相隔多远都能够即时感应到,只是强度会随距离(的平方)减弱。

地球之所以在轨道上年复一年地公转,是因为有来自太阳的引力——尽管两者之间存在着长达1.5亿公里的虚空。

那也是一个违反局域性的因果关系。面对同时代的莱布尼兹(Gottfried Leibniz)等人的反复诘问,牛顿只能摊开双手耸耸肩,承认他无法自圆其说。虽然如此,他的学说在太阳系运动的描述、预测中久经考验屡试不爽,也不能不令人信服。

1905年,还在专利局打工的青年爱因斯坦发表了一个崭新的动力学理论,将光速是信息传播速度的最高极限提升为物理学的原理。但他深知那瞬时作用的万有引力恰恰违反了这个限制。所以,他只把这个新理论称作“狭义”相对论。又经过漫长十年的艰苦努力,他才得以完成“广义”的相对论。在这更进一步的理论中,万有引力不再是牛顿的超距、瞬时作用,而代之以空间的弯曲。在太阳附近,空间因为太阳质量的存在发生了弯曲,改变了地球的行径。地球公转的直接原因不是遥远的太阳,而是地球所在当地的空间曲率。

于是,爱因斯坦再一次打破超距作用的迷雾,恢复了具备局域性的因果关系。弯曲的空间像泰勒斯的地下海洋、法拉第的电磁场一样,为引力作用提供了直接的接触。

所以,当超距作用借助量子理论又一次死灰复燃时,爱因斯坦立即便有了警觉。在他的心目里,因果律的局域性至关重要。

当实验台上的指南针突然摇动时,科学家知道那是因为旁边的一根导线正好有电流经过。那又是因为导线连接着电池,其开关刚刚被打开。那开关又是因为他助手的手指正按着按钮……这一连串可以追溯、能够验证的局域行为是科学家能够解释指南针摇动的逻辑基础。假如指南针的摇动同时也可能是因为波塞冬在海底皱了眉头,地球上某人不小心发了气功,或者水星与火星的位置发生了“相冲”,那么这个实验结果就不可能有确定的解释。科学也会随之失去存在的价值。

因此,从1909年的泡泡悖论到1927年的波函数坍缩,爱因斯坦频繁地提请同僚们注意这个致命的缺陷,却始终不得要领。

在早先的十年里,爱因斯坦曾经是量子概念的独行者,没有人认同他的光子概念。这时,他又在群星璀璨的索尔维会议上发现自己依然形单影只,没有人理解他对超距作用的忧虑。


德布罗意还是在这次的索尔维会议上才第一次见到他的伯乐和偶像。但他很是灰心丧气,因为他的演讲被泡利、克莱默等人驳得体无完肤,而爱因斯坦却没能施以援手。会议结束后,他们一同乘车去巴黎。爱因斯坦在那里换车回柏林。在巴黎北站的站台上分手时,爱因斯坦热情地鼓励德布罗意:别失望,继续努力。你正在走的路是对的。

当爱因斯坦看到德布罗意在会上提出隐变量理论时,他不由啼笑皆非。与童年时看到指南针那不合情理的表现一样,爱因斯坦坚信量子世界中的超距作用背后隐藏有更深刻的物理机制,会像电磁场、空间弯曲一样提供合理的局域性解释,保证因果关系的完整。那便是量子力学中的隐变量。德布罗意的理论与他自己本来准备在会上发表的论文大同小异,走的是同一条路。

爱因斯坦却在会前撤回了论文,因为他发现了另一个让他无所适从的问题。

泰勒斯之后的希腊哲人们笃信因果关系是理解、解释世界的不二法宝。在没有上帝、神灵颐指气使的理性世界里,勒皮普斯(Leucippus)声称,“没有无缘无故的发生,一切都有其原因和必要”。

微风的吹拂是树枝晃动的原因,树枝不会也不能够自作主张让自己摇晃起来。作为因果关系,微风与树枝不仅需要有直接的接触,还必须是两个可以彼此分开的物体。假如世界万物均为同一个整体,不可分割,那就无从谈起谁能影响谁,谁能把谁推动。只有在具备可分离性(separability)的前提下才能言及因果关系。

那么,物体又是如何地可分呢?

与勒皮普斯同时代的芝诺(Zeno)最喜欢钻这种牛角尖。他尤其擅长假想试验,只是古代的希腊还没有那个概念。芝诺的假想试验经常导致逻辑上的矛盾,因此被归为哲学思辩中的悖论。

据说芝诺曾提出过几十则五花八门的悖论。他证明过奔跑速度最快的阿基里斯(Achilles)永远也追不上一只缓慢爬行着的乌龟,也论述过一支射出去的飞箭其实仍然处于静止状态。但他心目中最深刻、最有意义的却是所谓的无限可分悖论:将一个物体分成两半,然后再将其中的一半又分成两半……这个过程可以无穷无尽地进行下去,永远也不可能分完。因此,他认为物体其实是不可分的。

作为回应,勒皮普斯的学生德谟克利特(Democritus)干脆提出一个新的假设:物体并不是连续的无限可分,它们其实是由非常微小、肉眼不可见的“原子”组成。当芝诺一半一半地切分物体时,他分到原子的尺度就只能停止,不再能继续分下去。原子物质存在的最小单位。

最早提出原子论的德谟克里特。

在德谟克里特的眼里,世界由无数的原子组成。它们彼此分离,如小球一般在虚空中自由运动。当一颗原子撞到另一颗原子时会改变对方的轨迹,自己也会同时反弹。那便是世界万物运动、状态变化最基本的因果关系。

在希腊语中,“原子”的字面意思是“不可分割的”,也就是德谟克里特心目中的最基本粒子。这个2000多年前的概念一直延续至近代,成为道尔顿的现代化学和玻尔兹曼的统计力学的基础。(无独有偶,爱因斯坦在专利局通过统计运算发现布朗运动的规律,证实了原子的存在。那液体中的原子也就是花粉表面上无规律随机运动背后的隐变量。)

然而,随着汤姆森、卢瑟福的发现,现代的原子已经不再是不可分割的基本单位。它由原子核和电子组成。如芝诺的推测,原子核也还可以继续被分成质子、中子,乃至夸克。夸克和电子等才是德谟克里特想象中的不可再分的基本粒子。

德谟克里特原子模型所体现的逻辑观念也经受了历史的考验。在牛顿精确的数学表述下,世界万物的运动均有着内在的因果关系。回应着勒皮普斯的信念,拉普拉斯在拿破仑面前宣布,物理世界中并不需要假设上帝的存在。

20世纪初,当普朗克遭遇黑体辐射的紫外灾难时,他在绝望中提出了与德谟克里特一脉相承的思想:能量不能被无穷分割。它有着一个最小的、不再能分离的单位:能量子。


爱因斯坦还是在研究玻色那个奇怪的统计时开始意识到量子世界背后暗藏着更多的不同寻常。

玻色提出微观的粒子不可分辨,无论如何交换都不会改变整体的状态。爱因斯坦推广了这一想法,指出粒子在极低温时会发生玻色-爱因斯坦凝聚:几乎所有粒子会聚集在一起,处于同一个量子态,让整个系统的熵趋于零。

在这个完全有序的状态中,不再会有单独的粒子,只剩下一个天衣无缝的整体。德谟克里特为了避免芝诺悖论而发明的原子概念突然消失了。处在玻色-爱因斯坦凝聚态中的原子互相之间不再具备可分离性。

那时还没有薛定谔方程,还没有波函数的概念。也许与布朗运动类似,那只是一个宏观的统计现象,背后还另有着隐藏的规律。

但薛定谔波函数的出现并没能解决这个问题。恰恰相反,海森堡在计算氦原子光谱时发现氦原子的两个电子共享着同一个波函数。那不是一个简单的两个电子在三维空间的分布函数,而是一个抽象的、处于六维希尔伯特空间中的函数。

电子是费米子,不遵从玻色统计,也就不会凝聚到同一个量子态中。因为泡利的不相容原理,两个电子会自动地处于不同的量子态。然而,那希尔伯特空间的波函数却也将氦原子的两个电子紧密关联。它们不再有自己独立的几率分布,它们的状态、行为互为依存,息息相关。

这并不局限于氦原子。爱因斯坦在构造他的隐变量理论完毕后才发现他这个新理论中的波函数不具备可分离性。如果一个系统中包含有两个子系统,它们的波函数会永远地交织在一起,无论它们在现实中是否已经相隔天壤,鸡犬不闻。它们只能和谐相处,步调一致,无法独立地互为影响。这不再只是宏观的统计现象。微观、个体的量子过程可以不遵从可分离性,也在颠覆着因果关系的基础。

显然这很是荒唐。爱因斯坦无法化解,只好撤回了论文。在索尔维会议上,无论是德布罗意讲演隐变量,还是玻恩、海森堡鼓吹量子力学已经大功告成,爱因斯坦皆冷眼旁观缄口不言。他的内心里依然充满了疑虑,不确定再过几年会是谁能笑到最后。


(待续)


Monday, November 16, 2020

量子纠缠背后的故事(廿四):女巫们的盛宴

当爱因斯坦在1911年收到新出现的索尔维会议邀请时,他还只是一个32岁的年轻人,刚刚加入被他称为“娼妓行会”的学术界。因为多年求职碰壁,他对占据学术高位的精英相当反感,曾满怀怨气地将他们贬为傻瓜、恶棍。索尔维会议的模式正是那些愚蠢的家伙在论资排辈过家家,更是让他哭笑不得。他既为自己能够栖身这个阶层欢欣鼓舞,同时也借用当时流行的说法,嘲讽那是个“女巫安息日(witches' sabbath)”举行的盛大宴会。

18年后,当洛伦兹在1927年筹备下一届会议时,48岁的爱因斯坦早已今非昔比,成为女巫中无可争议的最大巫婆。

索尔维的会议在1911和1913年办了两届后被第一次世界大战打断,直到战后的1921年才恢复。因为欧洲各国对战争发起者实行封锁,那届会议没有邀请德国、奥地利人参加,只为爱因斯坦开了个特例。爱因斯坦那年却因为去美国访问没有出席。1924年第四届会议时,他干脆拒绝了邀请,以抗议政治因素对学术交流的干扰。

索尔维已经在1922年去世。他生前对自己创办的这个新颖学术交流形式非常珍惜,每次都躬逢其盛。就在去世前一个月,他还以84岁高龄出席了新开张的第一届索尔维化学会议。去世后,他的后代薪火相传,继续资助着三年一度的盛会。

第五届索尔维物理会议在1927年举办,德高望重的洛伦兹依然担任会议主席。早在一年前,他专程拜访作为东道主的比利时国王,恳请能够解除对德国科学家的限制。柏林、哥廷根、慕尼黑、汉堡等地俨然是物理学中心,继续排除他们只会降低会议的份量。比利时在一战时曾是中立国,却遭到德国的野蛮入侵。在那场战争结束近十年、国际形势日渐宽松的环境下,国王宽宏大量地恩准了洛伦兹的请求。随后,德国也得到战后成立的国际联盟正式接纳,恢复了正常国际关系。

清除外交障碍后,洛伦兹邀请爱因斯坦加入作为“魔法部长办公室”的会议组织委员会。爱因斯坦欣然接受。会议的主题本来还是讨论过多次的“辐射与光量子理论”。但在筹备期间,洛伦兹感受到那两年新量子理论正突飞猛进,电子衍射实验又颠覆了既有的观念。他于是将主题改为“电子与光子”,并向波粒二象性的始作俑者爱因斯坦索取论文。爱因斯坦却在最后关头不得不撤了稿。

1927年正是量子物理新理论、新思想、新实验风起云涌的一年。即使是最顶级的法师,也对这横空出世的新巫术摸不着头脑。


当众女巫在10月的布鲁塞尔相聚时,他们多达29人,比前几届有所扩充。更显著的变化在于他们的年龄结构。洛伦兹、普朗克、居里夫人、郎之万几个五朝元老以苍苍的白发象征着会议的历史传承。德拜、爱因斯坦、玻尔、埃伦菲斯特、玻恩、薛定谔等是中坚一代。在他们身后,德布罗意、海森堡、泡利、狄拉克正激流勇进,开创着属于他们自己的新纪元。

出席第五届索尔维会议物理学家合影。1.普朗克、2.居里夫人、3.洛伦兹、4.爱因斯坦、5.郎之万、6.威尔逊、7.德拜、8.布拉格、9.克莱默、10.狄拉克、11.康普顿、12.德布罗意、13.玻恩、14.玻尔、15.埃伦菲斯特、16.薛定谔、17.泡利、18.海森堡、19.福勒。

当年32岁的爱因斯坦是第一届索尔维会议中最年轻的受邀者。这一次的泡利、海森堡和狄拉克却都还未及而立之年。出于人数和代表性的考虑,洛伦兹没有邀请索末菲和约旦。

一如既往,居里夫人是这群女巫中唯一的女性。

按照传统,他们集中在市中心最豪华的一间旅馆中住宿、进餐。在不远的公园附近有着索尔维资助建立的一系列科学、文化博物馆和研究所。这次的会议室设在生理研究所大楼内。每天早晨,他们在旅馆内共进早餐后便成群结队步行前往研究所开会。

10月24日,会议在这个星期一的早上10点正式开幕。索尔维的儿子致欢迎辞后,洛伦兹没有多言就邀请英国的布拉格上台,开始第一个讲座。当年仅25岁时就与父亲一起获得诺贝尔奖的布拉格这时已经人到中年。他综述了通过X射线衍射探测晶体结构的实验,引起热烈讨论。随后,上午的日程结束,大家休会享用午餐。

午饭后,来自美国的康普顿介绍了康普顿效应实验的新进展,随后又是一番热烈讨论。然后,这第一天的会议便结束了。精神十足的女巫们回到旅馆,那里为他们准备好了丰盛的晚餐。

第二天上午他们一齐到当地布鲁塞尔自由大学参加招待活动,下午才接着开会。在检阅了最新的实验结果后,他们这才进入“电子与光子”的理论探讨。首当其冲的是法国的德布罗意。

已经35岁的德布罗意不再是当年躲在房间里听他哥哥转述会场热闹的少年。不过他获得博士学位也才三年。当然那是相当不平凡的三年。他最早提出的所有粒子都具有波动性假说已经由薛定谔发展成系统的理论,并在年初刚被电子衍射实验证实。两年后,他还会因此获得诺贝尔奖。

但在这个群星灿烂的盛宴上,德布罗意还只是一个不知名的小巫。他所在的巴黎远离量子力学中心。他自己也疏于交往,过着与学术界近乎隔绝的日子。这次,他出乎意料地带来一个新的理论,终于为他三年前的波补上了物理意义。他认为量子的物体同时具备粒子和波动性,各有其责。犹如冲浪运动中的健将,粒子隐藏在波中,随着波的起伏运动。在会上,他通过一系列严谨的数学推导展示了薛定谔方程所描述的波是如何在引导着粒子。这个所谓的“导航波(pilot wave)”是表象,其中的粒子其实同时具有明确的位置和速度,与经典物理同样地遵从着严格的因果关系。只是它们被导航波遮掩,是我们无法直接观察到的隐藏变量,因此不违反海森堡的不确定原理。

这个有点离经叛道的声音立即引起争议。秉承玻尔互补原理的泡利、克莱默等人相继发难,一再指出德布罗意论据中的漏洞。没有经过大场面的德布罗意招架不住,只得把目光投向席间的爱因斯坦。爱因斯坦不仅当初曾是他物质波概念的知音,也一直研究着自己的鬼场、隐变量概念,是德布罗意唯一可希冀的救星。但德布罗意这次非常失望。爱因斯坦事不关己地端坐着,未吱一声。

第三天上午是会议的重头戏。收到洛伦兹的邀请后,玻恩和海森堡决定他们师徒联手,进行一场不多见的合作讲座。两人你方唱罢我登场,系统地回顾了新量子理论从矩阵力学到狄拉克和约旦变换理论、从不确定原理到波函数几率诠释的整个历史进程。最后,他们骄傲地宣布量子力学业已完备,其物理和数学的基本假设能够经受时间的考验。剩下的只是需要重新纳入狭义相对论效应。而那也已经有了实质进展,最终的完成不过只是时间问题。

他们所阐述的无疑是以玻尔为首的哥本哈根学派日益成熟的“主流”思想。听众席中的爱因斯坦依然微笑不语,只有狄拉克和玻尔发言做了一些补充。这个讲座成为会议上唯一没有引起广泛讨论而近乎冷场的日程。

那天下午是洛伦兹事先邀请的最后一个讲座,由薛定谔担纲。在与海森堡争执了两年多之后,薛定谔在上午的报告中惊讶地发现他的波动方程已经被哥本哈根那帮人接纳吸收,取代矩阵力学成为他们新学说的一部分,只是波函数被强加了一个几率波的诠释。自从拒绝玻尔的“劝降”,薛定谔与爱因斯坦、德布罗意一样,成为哥本哈根之外的边缘人。这一次,他到柏林就职后匆匆赶来开会,还没有什么新成果。他依然顽固地坚持着他的物质波概念,试图在理论上做出进一步的完善。

他这个与主旋律不和谐的论调自然未能引起共鸣。在玻尔、海森堡等人的连环抨击下,他与德布罗意一样也很快铩羽而归。

除了牛顿和伏特,1927年也是法国工程师菲涅耳(Augustin-Jean Fresnel)逝世的一百周年。菲涅尔是英国人杨的朋友和战友。他们曾一起埋葬牛顿的微粒说,建立起经典的波动光学。那个星期四,法国科学院在巴黎举办隆重的纪念活动。索尔维会议为此休会,方便大家前往参加。


作为安息日的盛宴,索尔维会议的日程安排一向悠闲轻松。洛伦兹在这届会议上更是匠心独运,力求减少正式的讲座,把最多的时间留给与会者自由发挥。为了让这些精怪的大脑无拘无束,会场外的自由讨论不做记录,任他们信马由缰。于是,会议中的精彩花絮只能从一些片断的回忆中攫取。

在埃伦菲斯特、海森堡等人的记忆中,他们最大的收获并不是来自会议室,而是旅馆里装修得富丽堂皇的餐厅。在咖啡和法式羊角面包的激励下,大会上一言不发的爱因斯坦却是每天早餐的大明星。

海森堡的不确定原理那时还是刚面世的新生事物。尤其是他那个基于显微镜的假想试验,对思想活跃、不轻易服气的物理学家是一个智力游戏般的挑战。无论是否已经在逻辑上接受这个结论,他们也都会情不自禁地去寻找那假想试验中的漏洞,或者挖空心思地构造另外的假想试验试图同时测量位置和速度,一举击溃这个原理的蛮横。爱因斯坦也乐在其中。

在早晨的餐桌上,爱因斯坦会饶有兴趣地提出一个新的设计,似乎能够挫败不确定原理的限制。玻尔坐在对面,聚精会神地倾听着。他们的谈话会延续到去开会的路上,两人亲密地边走边聊。他们的身后伴随着兴致勃勃地旁听着的海森堡、泡利和埃伦菲斯特。

这是玻尔的第一次索尔维会议。在以原子模型一举成名后,他在1921年就荣获邀请,却因为大病一场未能赴会。1924年,他声援爱因斯坦,也为促进学术交流的自由抵制了那年的会议。当他终于在这个会场现身时,他的声望早已今非昔比。尤其是在会议主题的“光子与电子”领域,他的地位与爱因斯坦相比其实还有过之而无不及。

与爱因斯坦不同,玻尔不是单枪匹马的新巫婆。他率领着一个实力越来越强大、以哥本哈根为号召的女巫团伙。在与导师旷日持久的激烈争论之后,海森堡业已浪子回头,皈依了他其实依然不那么理解的玻尔思想。作为不确定原理的始作佣者,海森堡对爱因斯坦的挑战尤为关注。无论是午餐还是会议休息的间隙,他都会与泡利凑在一起,反复推敲、试探爱因斯坦的逻辑。等到大家又回到旅馆共进晚餐时,玻尔已经胸有成竹,以他不紧不慢的语调向爱因斯坦转述手下小巫的发现,维护魔法的正统。

爱因斯坦锲而不舍,第二天一早又会在餐桌上拿出一个新的假想试验。于是海森堡、泡利、玻尔等开始他们新的一天。如是反复。这泾渭分明的两个阵营你攻我守,竟比会上的讨论更引人注目。

几天下来,玻尔的团伙成功地阻击了爱因斯坦多方位的挑衅,在这场游击战中占了上风。


与他在餐桌上的表现形成鲜明对照,爱因斯坦在连续三天的会议中保持着笑而不语的超然姿态。他其实也没闲着,只是经常像小学生那样与朋友在下面传递条子聊天。当玻恩和海森堡宣布量子力学已经完成时,埃伦菲斯特看着爱因斯坦的表情,递条子说:“别乐!炼狱里已经为量子教授保留了特别位置,他们会被罚在那里每天听10小时的经典物理讲座。”爱因斯坦心情愉快地写条子回应:“我只是在笑他们的天真。鬼知道几年后谁能笑到最后?”

参加菲涅尔纪念活动回来后,会议在星期五下午恢复举行。日程上已经不再有事先安排的讲座,剩下的一天半完全是自由讨论时间。洛伦兹简要地回顾了前几天已经涉及的量子世界因果关系、不确定性、随机性等问题,邀请玻尔做个总结。玻尔当仁不让,借机会陈述了量子力学的真谛:互补原理。

他解释说,其实并没有一个客观的量子世界,存在的只是我们实验观测结果的集合。光子或电子只是在我们观察时或者像波或者像粒子,或者有位置或者有速度。这些看起来自相矛盾。它们其实正是互相补充,一起构成抽象的量子力学描述。我们没在观察的时候,光子、电子既不是粒子也不是波,更不具备位置、速度等性质——它们并不存在。

在经典的统计理论中,我们只是因为无法同时掌握微观世界所有原子、分子的位置和速度,只能通过它们的统计分布来理解宏观性质。那是人类认识层面(epistemic)的局限。量子的世界并非如此。诸如波粒二象性、不确定原理等等不是认识的局限,而是本体(ontological)性质。通过不同的观测手段获取那些貌似矛盾的信息,将它们互补式地综合,才能够、也的确可以完整地描述这个世界。

玻尔的这番哲学论断顿时引起激烈反应。屋子里德语、法语、英语此起彼伏,连熟稔这三种语言、几天来纵横其间得心应手的洛伦兹也应接不暇。在一片混乱中,埃伦菲斯特独自走到台前,在黑板上写下一句圣经中的谶语:“上帝在那里打乱了人类的语言(……让他们不能明白彼此的意思【,也就无法建造巴比伦塔(Tower of Babel)】)。”

在会心的哄笑中,洛伦兹瞥见爱因斯坦举起了手,立即像看到了救星。全场也随之寂静无声,全部的目光都汇聚在缓缓走上讲台的爱因斯坦身上。

还是在会议上第一次开口的爱因斯坦谦逊地表示他上来发言实属非常的冒昧,因为他还没能对量子力学的本质有过深刻的思考。但他对玻尔等人认为量子力学已经是一个完整的理论颇有怀疑,有点想法要提醒大家注意。

接着,他在黑板上描画了一个简单的示意图。

爱因斯坦在索尔维会议上描画的假想实验示意图。电子或光子束从下方通过一个非常小的缝隙,最终落在半圆形的成像屏的某处。

无论是电子还是光子,它们经过一个非常小的孔洞时都会因为其波动性发生衍射,在洞的另一边形成球面波继续前进。设想远处有一个半球形的屏幕。它们到达屏幕时会体现出粒子性,只能“击中”屏幕上某一个点。假想这个实验中只有一颗光子或电子。按照波函数的几率解释,在它击中屏幕之前,那整个屏幕上每个点被击中的几率都是一样的。然而,就在它击中屏幕的那一刹那,整个系统的物理性质却会发生剧烈的变异:粒子在被击中的那个点以百分之百的几率出现,而其它所有点出现粒子的几率全变成了零。

如果用数学的语言描述,在粒子抵达屏幕之前,它的波函数是一个均匀分布的球形。而在击中屏幕那一瞬间,这个波函数却变成了狄拉克的δ函数:只在一个点上有数值,其它地方处处为零。

爱因斯坦指出,薛定谔的波动方程只描述了波函数随时间的平稳演变,其中并不存在这样一个莫名其妙的骤然变异。这个波函数从大范围的均匀分布到只存在于一个点的“坍缩(collapse)”过程既没有相应的物理机制也不具备严格的数学推演。因此,现有的量子力学不可能已经完备。

即使假设量子力学中的确存在这样一种未知的机制,能够协调空间各个点波函数数值的突然变化,爱因斯坦认为那样的结果必然违背狭义相对论。因为这个协调过程不需要时间,各个点之间任何信息交流都会是在瞬时完成,不受光速的限制。

这其实就是爱因斯坦八年前就已经提出过的“泡泡悖论”。这些年来,他以鬼场、隐变量等方式反复尝试,一直无法摆脱这个怪圈而自圆其说,却只眼睁睁地看着玻恩那大同小异的几率波概念得到广泛接受。这时,他不得不站出来大呼一声:且慢。

显然,爱因斯坦这番言语与那些天的主旋律大相径庭。海森堡、泡利等年轻一代还是第一次听到这么一个悖论,不禁瞠目。尤其是量子力学如果与已经被完全接受的狭义相对论相违,更会是一场灾难。他们立即辩解波函数只是一个抽象概念,不是可测量的物理量。其坍缩也许并不涉及真实信息的传播,不会违反相对论。

在又一轮的混乱中,玻尔再度站起来回应。他同样谦逊地致歉,表示并没听明白爱因斯坦想表达的是什么意思,只是也来分享一下自己的看法。

无论有意与否,玻尔大概并非过于自谦。他似乎的确没有明白爱因斯坦的主张,只是把这个悖论也当作那几天他已经习惯了的餐桌挑战,论证起这个假想试验不会违反不确定原理。出乎意料,爱因斯坦也没有坚持初衷,倒兴趣盎然地与玻尔你来我往,仔细研究起假想试验的各个技术细节。他们逐步将黑板上的试验“仪器”推广得越来越精巧复杂,直争得风生水起,莫衷一是。

身为爱因斯坦挚友的埃伦菲斯特看得忍无可忍,当众指责爱因斯坦固执地给量子力学挑刺的行为与十几年前萊纳德、斯塔克那些人攻击他的相对论如出一辙,只是一意孤行的胡搅蛮缠。泡利听闻此言喜出望外,感叹总算有人说出了他们小年轻想说而不敢说的大实话。


成功地主持了1927年的索尔维会议后,洛伦兹在三个月后去世。虽然他晚年对包括爱因斯坦在内的量子新生代给予了极大的同情和支持,他自己没能在这个新的前沿做出实质性的贡献。他的去世标志着最后一代经典物理大师的退场。

岁月沧桑,正在事业、个人生活中春风得意的爱因斯坦在他曾鄙夷的学术界地位也正在发生着微妙的变化。

索尔维会议期间,在忙着与玻尔辩论量子问题时,他还在旅馆里邂逅一位协助接待工作的当地志愿者。那是一位牧师,名叫勒梅特(Georges Lemaitre)。在爱因斯坦独傲群雄的广义相对论领域,勒梅特也对爱因斯坦在宇宙模型中人为地引入宇宙常数提出质疑,认为宇宙其实应该在膨胀中。已经读过勒梅特论文的爱因斯坦颇为不屑,当面指斥勒梅特“你的数学没问题,但你的物理直觉糟糕透顶。”(勒梅特关于宇宙膨胀、“大爆炸”起源的预测后来被证实,详见《宇宙膨胀背后的故事(之九):一个天主教牧师的全新宇宙观》。)

勒梅特也是只比泡利、海森堡大几岁的年轻人。爱因斯坦也许还没能意识到,在他们那下一代人眼里,他已经或正在蜕变成自己年轻时看不起的“恶棍、傻瓜”型学术权威,一个不通情理的老巫婆。


(待续)


Thursday, November 5, 2020

量子纠缠背后的故事(廿三):爱因斯坦的泡泡

希特勒的啤酒馆政变失败时,德国正在进入第一次世界大战后的黄金时代。来自美国的贷款遏止了失控的通货膨胀,国际封锁逐步被解除。终于松上一口气的德国社会开始相对平静、稳定的经济发展,反犹太的浪潮随之消退。

爱因斯坦也进入了他自己的黄金年代。

在百废待兴的战后,爱因斯坦因为广义相对论的辉煌和诺贝尔奖成为国家英雄、国际明星乃至全世界最引人注目的科学家。为了他即将到来的50大寿,柏林市决定赠送他一间郊区的度假别墅。这一友好举措却在市议会和官僚的扯皮中成为烫手山芋。烦不胜烦的爱因斯坦不得不发表声明拒绝了这份厚礼,自己掏钱买地修建了一幢中意的度假屋。

1920年代后期,爱因斯坦(左四)参加一战后的国际联盟(League of Nations)知识界国际合作委员会会议。左一是洛伦兹。


风流倜傥、事业有成的爱因斯坦当然也不浪费他成熟中年人的魅力。与艾尔莎再婚没多久,他就为一个好朋友的侄女、23岁的贝蒂(Betty Neumann)神魂颠倒,利用职权雇她担任依然不存在的理论物理研究所的秘书,方便共度爱河。在情书里,爱因斯坦兴致勃勃地憧憬将来远赴美国的纽约工作,带上贝蒂与艾尔莎一起过妻妾同堂的日子。收到贝蒂理智的回信后,爱因斯坦不禁自嘲地夸赞她居然比自己这个老数学家更能体会三角几何的难度。

他与贝蒂的浪漫只延续了一年有余。在柏林的花花世界,爱因斯坦不乏猎艳机会。他的情人中既有青春无邪的姑娘,也有上层社会的贵妇、社交名嫒甚至影剧明星。在相对开放的社会环境中,他无需躲藏,经常与不同的情人公开出入剧院、场馆。甚至有时他出国学术访问时,陪伴的也不是艾尔莎而是某个情妇。

除了在太过分的情形下发过几次火之外,艾尔莎对丈夫的风流采取了容忍和许可的态度。她崇拜爱因斯坦以及他的成就和知名度,也热爱这些为她自己带来的出头露面机会。所以她照单全收,在得以贴身陪伴世界名人的同时也接受了种种让她难堪的境遇。

那个年代的爱因斯坦的确可以志得意满。他独立创建的广义相对论不仅获得爱丁顿的观测验证,还已经被他应用于整个宇宙,通过引入一个“宇宙常数”项建立起人类有史以来第一个定量的宇宙模型【参阅《宇宙膨胀背后的故事(之一):爱因斯坦无中生有的宇宙常数》】。他的眼光还更远大,正倾全副心力于统一场论。他时不时宣布取得重大进展,在新闻媒体上造成轰动,却也不得不一次次地承认放的是哑炮。

在这些轰轰烈烈中,他心里最放不下的还是量子。光子——他曾经孤军奋战十多年而不被理解的概念——终于成为实验证实的存在。量子力学也蓬勃地发展成一门崭新的学科。但在海森堡、薛定谔以及玻尔等人的手里,这个所谓的新量子理论却演变为一个离家多年的孩子,让爱因斯坦觉得既亲切又陌生,更不可捉摸。


归根结蒂,物理学是一门研究自然界因果规律的科学。

牛顿首先定量地阐述了这个朴素的定律:物体会永远地保持静止或匀速运动。如果这个状态发生变化,必定是外在原因作用的结果。它表现出的加速度会与那外力的大小成正比,与自身的质量成反比。

外力导致物体运动状态的改变。这是物理学中最基础、最直接的因果关系。

牛顿的经典动力学让“万古如长夜”的世界突然变得明朗可知,还可以预测。经过一个世纪的实践,法国数学家拉普拉斯(Pierre-Simon Laplace)总结道,我们今天的宇宙完全是它过去状态的结果,也会是未来宇宙状态的原因。他豪迈且自信地宣告,只要能完整地掌握宇宙万物在今天这个时刻的位置、速度,以及它们之间相互作用,就能毫无差错地回溯历史,更能毫无疑问地预测将来。

传说法国皇帝拿破仑(Napoleon Bonaparte)听了这番宏论后好奇地问,既然世界如此有律可循,那上帝会是怎样的存在,起什么作用?拉普拉斯干脆利落地回答:“我从来都不需要假设上帝的存在。”

拉普拉斯的“科学决定论”是他之后物理学家乃至所有科学家的信念。自然界遵从着确定的物理定则。任何运动、变故的发生和走向都有着可被认识的原因,引发可被预测的后果。既不需要上帝随心所欲的指手划脚,也不存在捉摸不定的随机因素。

直到20世纪的前夜。

居里夫妇认为新发现的放射性现象是“一个神秘的谜,一个深奥的惊愕”,因为放射性元素的衰变似乎是完全自发,没有外在的原因。当然,那也许只是一个物理学家尚未解开的谜,其原因暂时还没有被发现。

20年后,海森堡提出了更深刻的质疑。在那篇发表不确定原理的论文中,他指出科学决定论在量子世界中已经无法适用。由于位置、速度等最基本的物理量不可能同时被精确地掌握,也就谈不上决定性地预测未来。

海森堡基于他的粒子观念理解不确定原理,因此秉承着牛顿动力学的传统,把位置、速度(动量)看作描述物体运动不可或缺的物理量。玻尔劝他也应该改换视角,从波动的角度再作分析。海森堡嗤之以鼻。虽然他至少在计算过程中已经很不情愿地放弃他那繁复的矩阵而采用了简捷的波动方程,他依然固执地拒绝作为物理图像的波。

玻尔的提醒却极富深意。薛定谔的波动方程与牛顿方程一样,是描述系统随时间演变的微分方程,具备着同样确定的因果关系。它所不同的仅仅是描述系统状态的不再是位置和速度,而是波函数。只要能确定某一时刻的波函数,就可以像拉普拉斯设想的那样,根据薛定谔方程上溯历史展望未来,精确地预测将来任何时刻的波函数。

然而,这是否就意味着量子的系统也会像经典物理一样地遵从因果定律呢?

玻恩是在研究两个粒子碰撞的过程中提出波函数的几率诠释的。他说,如果两个粒子迎头相撞,它们各自会飞向任何方向。薛定谔的波动方程能够推算出碰撞之后的波函数,却只能给出粒子飞向某个方向的几率,无法直接预测粒子一定会飞向哪个方向。

于是,如果想知道在某个方向上能不能观测到被撞飞的粒子,只靠薛定谔方程中的因果律是不够的。那还必须扔个硬币、骰子碰碰运气——需要劳驾那个拉普拉斯不需要的上帝。爱因斯坦无法接受这样的反动。他当即写信向玻恩表示异议:上帝不会掷骰子。


爱因斯坦对随机运动并不陌生,他早已浸淫其中20多年。

早在大学时,爱因斯坦就对麦克斯韦、玻尔兹曼的统计理论非常着迷,还因为课堂教学没有这方面的内容与韦伯等教授闹翻,影响了毕业后的前程。在1905那个奇迹年,他在光电效应后发表的第二篇论文便是用统计理论解释了布朗运动。

统计是一个与牛顿动力学完全不同的研究手法。在19世纪后期,越来越多的证据表明化学家心目中的原子、分子是真实的存在,日常的固体、液体、气体物质其实是由肉眼看不见、数以1023计的原子分子微粒构成。显然,谁也不可能同时跟踪这其中每个微粒的位置和速度,然后根据它们之间相互作用来进行动力学运算。

麦克斯韦认识到也完全没有那个必要。在这大样本中,具体每个微粒的运动、因果关系对整个系统的宏观物理性质无关紧要。它们可以被当作各自进行无规律的随机运动,在相互碰撞中达到热平衡。他运用统计手段可以计算出系统温度、压力、密度等宏观可测物理量之间的关系。同样地,爱因斯坦后来推导出花粉表现出的布朗运动规律,被实验严格证实。

随后,爱因斯坦又故伎重演,通过统计手段计算了光的压强,发现其中同时包含着作为波动的电磁波和作为粒子的光子成分,第一个揭示了波粒二象性。

当初出茅庐的爱因斯坦在1909年的萨尔兹堡会议上发表这一成果时,在场的行家里手都一脸懵懂。那时候,普朗克的能量子还只是光被吸收、发射时的最小能量单位,不具实质物理意义。尤其是光在没有与物质相互作用时绝对不会呈现任何量子性,是完全遵从麦克斯韦方程传播的电磁波。因此,爱因斯坦那空腔中的光不应该蕴含任何粒子性质。

爱因斯坦早有准备。他在讲解中祭出自己久经考验的法宝:假想试验。他请大家想象能把阴极射线管的热度调得无限地低,以至于只有单独的一粒电子能从作为阴极的灯丝中逸出。这粒电子会直直地向阳极跑去,击中那里荧光屏上的某个点。这是一个极其平常的粒子运动,没有人会为它费脑筋。

他又请大家想象把一个光源的能量也调得无比地低,让它也只发出单一的普朗克能量子。如果光的确是普朗克相信的电磁波,那么所发的光是一个球面波,如同一个膨胀中的肥皂泡泡同时向四面八方均匀地“散开”。然而,当它在某处被吸收时,这个泡泡所有的全部能量却又要突然集中在那一个点上——因为它只能作为整个的能量子被吸收。

爱因斯坦“泡泡悖论”示意图。最上边(a)描绘的是一颗电子打中靶子;(b)是一个原子发光,形成球面波;(c)原子发出的光在某处被吸收,释放出电子。这时“球面波”中所有的能量会突然集中在那个靶子所在的一个点上。

光的能量在传播时像泡泡似地分散,在被吸收时却又魔术般地集中在一个点。这显然说不通。爱因斯坦总结,如果光在发射、传播、吸收的整个过程中都是一颗与电子一样的粒子,就合情合理了。

在1909年,爱因斯坦这个直观的“泡泡悖论”没有被萨尔兹堡的物理学家接受,甚至没能引起注意。但那之后,他却始终无法忘怀这个简单的假想试验,多少年来反复思索,竟逐渐从中发现量子理论的软肋。


1917年,爱因斯坦在玻尔原子模型基础上提出量子辐射理论,定义了自发辐射、受激辐射和受激吸收这三个原子与光相互作用的机制,成功地推导出黑体辐射的普朗克定律。通过这个模型,他发现原子每次只能往一个方向发射一颗光子,不可能产生球形的波或“泡泡”,否则原子与电磁场无法达到热平衡。现实中的球面波只是非常多的原子随机向各个方向发射光子的统计效果。这个结果让他确信光子的存在,虽然他的先见依然没有得到物理学界认可。

原子在某一个点发出光子,光子与电子一样直线运动,到达另一个点被另一个原子吸收。这个过程正符合他用泡泡悖论演示的情景。但它却也带来了新的问题。他的光子只是粒子,没有波动,既不符合波粒二象性也与一百多年的干涉、衍射实验观察相违。于是,爱因斯坦不得不设想也许另外还存在一个服从麦克斯韦方程的“鬼场”,以波动的形式传播。

可是当他试图构造这个鬼场的具体模式时,他总会不可避免地重新落入泡泡悖论的陷阱:点光源的鬼场必然会以球形波的方式弥散,而粒子却又只能在一个地点现身。几番尝试之后,他不得不放弃了这个念头。

他没有想到,这个逻辑上无法成立的鬼场居然会在玻恩那里死而复生,摇身一变成为波函数的几率诠释。

作为一个函数,薛定谔的波函数在空间每一个坐标点都有着一定的数值,可大可小。玻恩解释说这个大小决定了粒子在该点出现的几率。当波函数的形状随时间依照波动方程变化时,粒子在各点出现的几率也随之变化。那便是对应于经典力学的量子动力学行为。

波函数不仅是粒子所处位置的几率度量。它同时也包含粒子的速度以及其它经典物理量信息。速度或动量便来自波函数随空间变化的频率。如果波函数中只具备单一的频率,那么粒子的速度就可以完全确定。这样的波函数是标准的周期函数,说明该粒子在空间任何地点都可能出现。这样粒子的位置便无法确定。反之,如果粒子只存在于空间的一个点,那么其波函数看起来会相当突兀。它只在那个点上有数值,其余地方都是零。狄拉克为这个数学上并不成立的函数赋予了正式的名字,叫做“δ函数”。δ函数经过傅立叶分解后会有无限多的频率成分,也就是粒子的速度完全不可确定。

在这两个极端之间,波函数和它的傅立叶分解式都会呈现一定的波包形态。这时,粒子在一定范围的位置上都有出现的可能,也会有着一定数值范围的速度。那就是说它的位置和速度同时存在着不确定性。这正是海森堡不确定原理在波函数、波动力学中的表现。

因此,即使通过薛定谔方程可以完全确定地计算波函数随时间的演变,也并不意味着可以确定波函数所描述的粒子在任何时刻的位置、速度。波函数中所蕴含的因果关系只会在几率、统计的意义中体现。


当爱因斯坦采用统计方法计算布朗运动、光压强时,他和其他所有物理学家一样并不认为这个方法所依赖的随机运动会违背拉普拉斯的决定性。那只是在面对大样本数据时采用的一个数学捷径,专门对付无法全面掌握的微观细节。如果技术高度发达,人类有能力同时测量系统中全部原子、分子的位置和速度,应该就可以舍弃统计平均,回归牛顿那遵循严格因果律的动力学,不带任何随机因素地准确预测未来。

但玻恩诠释中波函数代表的几率却不是来自大样本数据中的平均值,而是单一粒子在薛定谔方程描述下的行为。那不是因为技术限制采取的权宜之计,而是量子世界的本质表现。

爱因斯坦对此却也似曾相识。他十几年前的辐射理论便充满了类似的随机。原子的自发辐射与放射性元素衰变同样,是一个没有原因的行为。原子似乎可以自主地选择在某个时刻突然向某个随机的方向发射出光子,或α、β粒子。于是他不得不在论文结尾特意指出“这个理论最薄弱的所在,是它把辐射的时机和方向都归结于‘机会’。”

当年轻的玻尔在1920年带着丹麦特产奶酪到柏林的公寓拜访爱因斯坦时,两人那第一次见面的交谈就纠缠于这样的随机、自发现象。玻尔虽然对爱因斯坦的辐射理论很是钦佩,却还远远没有接受光子的存在,更没能对爱因斯坦的忧虑产生共鸣。

玻尔的原子模型同样地充满了随机性。电子在轨道之间的跃迁也是一个没有外在原因的自发行为:电子自己在决定着什么时候离开所在的轨道,选择另一个轨道跳跃过去。玻尔不觉得这会是大问题。他的原子只是一个“唯象”的模型,可以用来解释实验观测,但并不是真正的物理规律。

海森堡的矩阵和薛定谔的波动正是玻尔模型所需要的更深层理论架构。然而,这两个等价的理论也没能消除玻尔模型中的随机性,反倒还在数学上严格地奠定了海森堡的不确定原理。随机性在这样的量子理论中无可避免。

爱因斯坦认为这恰恰暴露了那些理论的致命缺陷。当新量子理论问世时,他曾直觉地认为海森堡的矩阵力学不可信,但对薛定谔的波动方程充满了期望。意外地得知二者等价后,爱因斯坦不得不重新审视波动力学,尤其是玻恩的几率波诠释。他坚信一个完整的理论必须具备严格的因果关系,不能容忍其中含有随机因素。

1927年不仅是伏特逝世100周年,也是牛顿去世的200周年。那年3月,爱因斯坦在《自然》杂志上发表纪念文章明确指出:“牛顿的微分方法只是在量子理论中才显得力不从心。的确,连严格的因果关系也不灵了。但这还不是最后的结论。希望牛顿方法的精神能帮助我们重新将物理的实在与牛顿学说中最深刻的特征——严格的因果律——合二为一。”

那年,当玻尔埋头撰写他的互补原理时,爱因斯坦也有了新的突破。5月5日,他在柏林普鲁士科学院会议上宣读了题为《薛定谔波动力学能完全地还是只能在统计意义上确定系统的运动?》的论文,指出薛定谔波函数中的随机性只是一个表面现象:所谓的新量子理论本身也只不过是一个比玻尔模型稍深一层的唯象模型。在它们背后还有着更深一层的物理规律在决定着量子世界的运作。这个具备严格因果关系的“隐变量(hidden variable)”只是因为未曾暴露才使得量子力学表现出没有缘由的随机特色。

他的新理论完美地解决了这一难题。

然而好景不长,爱因斯坦在5月21日就紧急撤回了这篇论文,之后再没有正式发表。当洛伦兹来催促他为即将召开的重要会议提交论文时,爱因斯坦只能道歉连连,声称自己早已远离量子领域,实在无以奉献。


(待续)