Showing posts with label 海森堡(Werner Heisenberg). Show all posts
Showing posts with label 海森堡(Werner Heisenberg). Show all posts

Thursday, February 25, 2021

量子纠缠背后的故事(卅五):分崩离析的裂变

EPR论文发表的1935年,67岁的索末菲退休。他在给爱因斯坦的信中诉说纳粹的上台摧毁了自己一辈子的爱国情操。现在他宁愿看到德国不复存在,并入一个崇尚和平的欧洲。

索末菲的退休是海森堡在莱比锡一直在等待的机会。他梦寐以求回返慕尼黑接替导师的席位。然而他生不逢时。在那之前几年里,海森堡没有参与斯塔克和萊纳德的“德意志物理学”运动,反而支持、协助了劳厄的抵制行动。海森堡坚持物理是客观的科学,无论其理论是否来自爱因斯坦或别的犹太人。

斯塔克没有忘记。为阻扰海森堡的升迁,他发起大批判揭露海森堡的不坚定立场,还给他戴上“白犹太人”的致命高帽。海森堡措手不及,不得不求助与他家有往来的纳粹高级领袖希姆莱(Heinrich Himmler)。希姆莱及时地为海森堡提供了保护,但也严厉警告他必须说话小心,不可造次。在那之后,海森堡吸取教训,不再轻易提及爱因斯坦等犹太物理学家的名字。当然,他的慕尼黑梦想也付诸东流。


EPR论文问世之际,狄拉克正好结束他在高等研究院的短期访问。

相比众望所归的海森堡和薛定谔,名气不高的狄拉克在1933年获得诺贝尔奖时只有区区两个提名。其中之一来自在1925年因X射线衍射实验与父亲共同获奖的布拉格。那时才25岁的布拉格迄今还是最年轻的科学奖获得者。狄拉克得奖时31岁,成为历届获奖者中最年轻的理论物理学家(这个记录在1957年被还不到31岁的李政道(Tsung-Dao Lee)打破。(如果按照所得的1932年奖来算,海森堡比李政道还会更年轻几天。但他是在1933年才得到那个奖。))。

在高等研究院,狄拉克重写他的《量子力学原理》,推出大为改进的第二版。他那套符号表述还没能得到广泛接受,但至少在他手里已经圆润成熟。然而,美轮美奂的数学背后,计算结果中出现的无穷大问题依然让他束手无策。

至少在同行眼里,年过而立功成名就的狄拉克不再是过去那个心无旁骛孜孜不倦的勤奋青年。他上班时经常在活动室里钻研各种棋局,包括充满异国情调的围棋。似乎数学公式及其中的困难都已经不再能拴住他的身心。

更让他们大跌眼镜的是一向不近女色,过着僧侣般日子的狄拉克居然坠入了情网。一次午餐时,狄拉克偶遇研究院朋友维格纳(Eugene Wigner)从欧洲来探望的妹妹曼琪(Manci),一见钟情。曼琪已经是两个孩子的母亲,刚刚摆脱了一场梦魇般的婚姻。她为人爽快健谈,性格活脱脱是狄拉克的反面。

结束在研究院的访问后,狄拉克与六年前一样乘火车横越美国大陆,在旧金山搭乘邮轮经日本、苏联到东欧去看望曼琪。这是他的第二轮环球旅行。

曾经在芝加哥师从康普顿的吴有训已经学成归国,在清华大学担任物理系主任。他得到消息后立即与同校的周培源教授一起邀请狄拉克顺路访问中国。1935年7月12日,狄拉克从日本乘船到天津,然后在北平逗留了一星期。

1935年7月16日,狄拉克在中国访问国立北平研究院物理所。前排左起:吴有训、狄拉克、李书华、熊庆来、严济慈。

他游览了长城、故宫等名胜,也在清华大学做了两场关于电子、正电子的讲座。随后,他乘火车由东北转西伯利亚铁路至莫斯科,继续他的行程。


虽然与院长关系紧张,爱因斯坦对普林斯顿的环境还是很满意。他在1935年5月专程出国,按规定在美国境外的领事馆递交了归化申请。这是他继瑞士、奥地利、德国后第四次也是最后一次更改国籍。在那之后,他再也没有离开过美国。

他和妻子艾尔莎在小镇僻静的街道上置买了一栋普通小楼,与一直跟随着他的秘书杜卡斯合住。他们的小日子不幸非常短暂。艾尔莎的身体每况愈下,在1936年底去世。随后,艾尔莎的二女儿和爱因斯坦的妹妹相继从欧洲来到美国,与杜卡斯一起照料这个举世闻名的鳏夫。(曾担任过爱因斯坦秘书的那个艾尔莎大女儿也已经病逝。)

爱因斯坦与前妻玛丽奇的大儿子也来到美国。他在父亲母校苏黎士理工学院获得工程学位,已然成家立业(爱因斯坦曾经像自己父母拒绝玛丽奇一样强烈地反对儿子的择偶选择)。在其后的年月里,他逐渐修复了因为父母离异、父子隔绝而对父亲的怨恨。爱因斯坦和玛丽奇的二儿子患有精神疾病,只能留在欧洲继续由母亲照料。

年近花甲的爱因斯坦是在艾尔莎病重后才真切体会到自己对这个保姆式后妻的依赖,一时间急剧衰老。妻子去世后,他更加任性地不修边幅,由着那一头白发在风中狂乱飘逸。他沉默寡言,试图独自沉浸在钟爱的物理之中。但除了他自己,所有人都能看出他在学术上已是勉为其难,不再有睿智的思想火花。

当玻尔在1937年初来到普林斯顿时,他看到的正是这样一个激情不再的爱因斯坦。那还是他们1930年索尔维会议分手后的第一次见面。在与薛定谔、玻恩等人热火朝天通信来往时,爱因斯坦与这位老对手完全没有联系。索尔维会议后,埃伦菲斯特作为两人的共同好友曾一度居中传话,试图澄清误解。那个别扭的渠道早就随着他的自杀消失。

尽管爱因斯坦和玻尔在两次索尔维会议上的唇枪舌剑中始终保持着友好的姿态,那天长日久的争执也不可避免地伤害了个人感情。这次重逢,他们寒暄依旧,却不再能敞开心扉畅所欲言。

玻尔也只是在他的环球旅途中路过普林斯顿。日本的物理学家在爱因斯坦、海森堡和狄拉克相继访问后已经花了十年时间在邀请、期盼玻尔来访。奈何玻尔日程繁忙,曾几度推迟行期。1934年,他与大儿子和朋友出海游玩时遭到风浪,儿子落水遇难,给这个和睦的家庭带来沉重打击。这样直到1937年,玻尔才得以携妻子玛格丽特和二儿子踏上旅途。他们在普林斯顿短暂逗留后也横穿美国大陆,乘邮轮前往日本。

吴有训得知后又赶紧委托在美国的周培源向玻尔发出顺路访问中国的邀请。(周培源在加州理工学院获得博士学位后在莱比锡和苏黎士分别担任过海森堡和泡利的助手。在他们的推荐下,他曾到波尔研究所访问,是那时去过那里的唯一中国人。)玻尔欣然同意,于1937年5月20日从日本乘船抵达上海。他们一家三口先后访问上海、杭州、南京、北平,拍摄了大量照片甚至一段彩色电影片。沿途,玻尔也做了多场演讲、座谈,向中国的物理学家、知识分子讲解互补原理以及最新的原子核理论。

1937年,玻尔(前排中)访问中国时与当地物理学家合影。

直到6月7日晚,他们才从北平乘火车出山海关,与狄拉克一样取道苏联返回丹麦。

一个月后,北平郊区的卢沟桥发生事变。短短半年后,玻尔曾经流连忘返的那几个城市相继沦陷于日本军队的铁蹄之下。中国进入全面战争状态。


当薛定谔在1936年10月回到阔别十多年的故乡时,那里已物是人非。奥地利名义上还是独立国家,但已经沦为德国的附庸。虽然薛定谔既不是犹太人也不热衷政治,他在荣获诺贝尔奖前突然离开柏林大学的行为让德国政府和纳粹党徒大光其火,曾经在报刊上大肆批判。回到矮檐下的薛定谔只好低下头,专注于自己的教学任务和学术研究。在跟着爱因斯坦纠缠了一番猫的死活后,他又对爱因斯坦与爱丁顿正在研究的统一场论产生起浓厚的兴趣。

他的个人生活恢复了“正常”,又可以在妻子安妮、两个情人和小女儿之间如鱼得水。作为一个小小的象征性反抗,普朗克还主持将1937年的普朗克奖章授给了薛定谔。那正是薛定谔自己八年前为德国物理学会设立的大奖项。

然而,不到半年后,德国正式吞并了奥地利。这个也是希特勒故乡的传统小国成为德国的一个州。一时间,奥地利的犹太人成为被清洗、驱逐、羞辱的对象。薛定谔也成为眼中钉,言行受到紧密的监视和控制。为了保住岌岌可危的职位,他向校方递交了一份“自白书”,承认自己过去的认识错误,无保留地宣示对德国和“元首”的效忠。这封热情洋溢的信件立即出现在德国和奥地利报纸的头版,并通过英国报刊的转载传遍全世界。在伦敦,林德曼和牛津大学的同僚们为之气愤、痛心。

对薛定谔来说,更糟糕的是他还不得不舍弃那个交往不久的新情人。因为她是犹太人,他只得断然终止关系并要求她将以前的情书尽数焚毁,不留痕迹。

他的高调表态一度改善了处境。1938年春天,他被许可到纳粹德国的首都柏林参加普朗克80岁生日庆祝。夏天,他又带着老情人希尔德去拜访普朗克夫妇,一起在阿尔卑斯山中度假。然而,薛定谔回家后就收到了被解职的公文。奥地利已经不再是他的容身之地。他和安妮不得不再次踏上流亡路,在费米的帮助下取道意大利逃出法西斯领地。

第一次世界大战后从英国赢得独立的爱尔兰那时正在努力提升自己的文化、科学地位。他们模仿普林斯顿的高等研究院在自己首都创建一个同样的学术机构,连名字也完全照搬:都柏林高等研究院。薛定谔还在奥地利时,爱尔兰人就已经通过玻恩与安妮辗转地秘密接头,希望能有这个诺贝尔奖获得者去当新研究院的带头大哥。于是,薛定谔在一番折腾后阴错阳差地获得了他求之不得的理想职位。他不再需要花时间站讲台授课,还有了个至少在名义上与爱因斯坦平起平坐的位置。(在其后的1940年代,玻恩所在的爱丁堡和薛定谔的都柏林成为美国之外中国学生的聚集地。计有彭桓武、程开甲、杨立铭、黄昆、胡宁等人曾在那里学习、进修。)

已经屡次被薛定谔行为激怒的林德曼也再次伸出援手,为他们提供了行程便利。在牛津和比利时临时任职等待一年后,薛定谔和安妮在1939年10月初到达都柏林安家。他们还带着玛奇已经“送还”的希尔德和小女儿。薛定谔另外的那个情人自己逃离奥地利后也与他们再度汇合,重归于好。

他的生活又一次恢复了正常。


1939年初,玻尔再度来到普林斯顿。高等研究院已经永久性地聘请他为访问成员,拥有随来随去的特权。这一次,他在研究院中驻扎了半年之久。然而,爱因斯坦似乎有意回避远方的客人,他们只在所里的聚会场合有过几次碰面。其间爱因斯坦做过一次统一场论进展的讲座,玻尔躬逢其盛。爱因斯坦一如既往地坚持那才是有望解决量子力学问题的最佳途径。但他又直视着玻尔强调他不愿意再继续讨论这个话题。被噎住的玻尔甚是不快,无可奈何。

其实玻尔这次也不会有多大兴致继续那个争论,他有着更紧迫的现实问题。就在丹麦的码头上登船那一刻,他得知了来自柏林的最新实验结果:当铀被中子撞击时,出现了质量不到铀一半的钡。因为犹太人身份逃离德国的迈特纳(Lise Meitner)和侄子弗里施(Otto Frisch)认为那是铀原子核被打击后分裂成两个质量差不多的碎片,钡是其中之一。

卢瑟福早就确定了原子不是一成不变的“元素”。质量重的原子核可以自发衰变为另一种原子,轻的也能被考克饶夫和沃尔顿的加速器中出来的质子打开,发生人工嬗变。但原子核整个地一分为二却还是非同小可。弗里施借用生物学中细胞分裂的术语把它称作“裂变(fission)”

还在横渡大西洋的邮轮上时,玻尔已经认定伽莫夫的液滴模型是理解原子核裂变的有效工具。自然地,他需要一个得力的年轻助手协助他完成具体的计算并撰写论文。事有凑巧,在纽约港口迎接他的是曾在哥本哈根镀过金的老相识惠勒(John Wheeler),立刻就抓了他的差。惠勒已经是普林斯顿大学的助理教授,正好天时地利人和。师徒俩一头扎进这个新课题,短短几个月间奠定了原子核裂变的理论基础。

相比之下,爱因斯坦的纠缠和薛定谔的猫不是那么急迫。

那年7月,玻尔结束在美国的访问回到哥本哈根。两个月后,德国军队发动闪电战大举入侵波兰。欧洲的第二次世界大战揭开序幕。


那个夏天海森堡也一直在美国巡回访学、出席学术会议。尽管他刻意回避,他们的话题总不可避免地会涉及一触即发的战争形势。在罗切斯特,他过去的助手威斯科夫(Victor Weisskopf)和老相识贝特(Hans Bethe)都强力劝说他在美国留下。但海森堡立场坚定。他相信纳粹会赢得这场战争。虽然他本人对纳粹并没有好感,却也必须为国效力。

一站又一站,海森堡的老朋友们听到的是同一个回答。在8月份的会议上,他没等会议结束就匆匆辞别。因为他必须赶回去参加机关枪射击训练。

短短三年后,贝特和威斯科夫不得不向美国政府提议在战争中寻找机会以绑架、轰炸甚至暗杀的形式对付他们这位过去的导师、朋友,“否决敌人的大脑(deny the enemy his brain)”。

其后两年中,美国军方做了多次尝试,只因种种缘由未能奏效。1944年12月,海森堡到中立的瑞士讲演。他不知道听众席上正坐着一位怀中揣着手枪的美国间谍,其使命是只要听到海森堡透露出他们在核武器上有任何进展的迹象就不惜任何代价将他当场击毙。海森堡的那次演讲却是纯学术,讲解他为解决量子问题新发明的“散射矩阵(S-matrix)”理论。为了避免外交纠纷,间谍没有采取行动。(这位间谍名叫伯格(Moe Berg)。他原来是美国职业棒球明星,也是普林斯顿和哥伦比亚法学院毕业的高材生。因通晓七国语言在战争爆发后投身地下工作。)

海森堡侥幸活到了战争的结束。与贝特和威斯科夫一样,当年在一起探索自然秘密的物理学家都因为战争归属了敌对的两个阵营。发现电子自旋后就到美国工作的古德斯密特受命在战场上搜捕参与核武器计划的德国物理学家,将他们统一关押于设在英国的特殊营地,通过监听手段获取他们的机密。海森堡、劳厄、萊纳德等人都成为那里的阶下囚。他们是在那里听到原子弹在日本爆炸的新闻才知道美国、英国已经超越德国,获得了他们未能攫取的成功。

87岁高龄的普朗克也被古德斯密特追踪捕获。他没有被送往战俘营,而是获准自己养病。普朗克深受脊背痛苦,已然伛偻龙钟。在80岁生日之后,即使德高望重也因为立场不坚定被指为“白犹太人”的他决定彻底退休,不再过问政事。临别之际,他还做主把1938年的普朗克奖章授予德布罗意:一位追随“犹太物理学”的法国人。

普朗克曾在一战中失去他的大儿子,二儿子在法国战场上被俘而幸存。战后,那个儿子逐渐成长为政府中的部长助理,但在希特勒上台那天辞职。1944年,已经败像毕露的德国军队中发生政变,部分高级官员刺杀希特勒失败。在随后的大清查中,普朗克的儿子也涉案被捕。年老的普朗克不得不低声下气地向希姆莱、希特勒求情,但儿子还是被处以绞刑。(在哥本哈根改编《浮士德》的德尔布吕克的妹妹、妹夫和妹夫的弟弟也在那次事件中牺牲。)


卢瑟福没能看到原子核裂变的发现。他在那之前的1937年一次手术中意外离世。作为原子核嬗变的鼻祖,卢瑟福清楚核反应时会释放能量。但他认为那能量过于微弱,不具备实用价值,只是所谓的“月光(moonshine)”——不切实际的痴心妄想。

裂变是剧烈的核反应,释放出比卢瑟福看到过的嬗变中大很多的能量。那却也不过是稍微明亮一点的“月光”。匈牙利物理学家西拉德(Leo Szilard)却一直坚持着一个可能性。铀原子核裂变时还会产生几颗中子。如果这些中子又能碰到另外的铀原子核如法炮制,便可以形成持续性的“链式反应(chain reaction)”。这样,微观世界那微乎其微的能量可以在极短时间内聚集,在宏观世界中宏伟壮丽地爆发,甚至成为可以决定战争胜负的巨型炸弹:原子弹。

西拉德也是众多从欧洲逃到美国的犹太人之一。他人微言轻,只好联合同是匈牙利人的维格纳和泰勒(Edward Teller)说服大名鼎鼎的爱因斯坦出面。(他们三人后来被戏称为促成美国核武器的“匈牙利阴谋”。)他们一同起草了一封致美国总统罗斯福(Franklin Roosevelt)的信,提醒政府注意这个潜在的威胁和机会。信由爱因斯坦签名送达白宫时,德国刚刚入侵波兰。

1939年8月,西拉德(右)与爱因斯坦讨论给罗斯福总统的信稿。

那年年初在纽约港口迎接玻尔的除了惠勒还有费米。因为妻子是犹太人,费米在意大利也处境艰难。正好,他因为核物理研究的成就获得了1938年诺贝尔奖。在斯德哥尔摩领奖后,费米带着妻子和两个孩子以奖金为路费直接来到了美国。

三年后,费米和西拉德所带领的团队在芝加哥实现了人类第一个链式核反应。

1945年8月6日和9日,两颗不同型号、设计的原子弹分别在日本的广岛、长崎上空爆炸。8月15日,作为法西斯轴心国最后堡垒的日本无条件投降。第二次世界大战结束。


作为德国研制核武器的“大脑”,海森堡虽然逃过了反法西斯同盟国的追杀,却没能为他的祖国建造出原子弹。第一次世界大战之后,德国的物理学在普朗克坚定、稳健的领导下重新崛起,在最尖端的量子力学、核物理上傲视全球。海森堡没能在核武器上取得突破,也始终确信敌对方更不可能有所成就。直到在战俘营中听到原子弹爆炸的新闻他才如梦初醒。迫于形势,他极力改写历史,为自己塑造出一个在内部消极抵抗纳粹,故意拖延原子弹进程的新形象。

原子弹的爆炸再一次将爱因斯坦推上举世瞩目的前台。卢瑟福的“月光”在一瞬间变作史无前例之“比一千个太阳还亮”的释放,充分展示狭义相对论所揭示质量转化能量的威力。

因为那封给罗斯福的信,爱因斯坦也经常被看作原子弹的始作俑者。其实,他的信只得到一般性的注意。美国研制原子弹的“曼哈顿计划”是在那之后两年多才开始实施。那时日本已经轰炸了珍珠港,将美国拖进大战。原子弹的初步研究也已经在英国完成。

由于还有着同情共产党和反战的嫌疑,爱因斯坦没有获得接触最高机密的资格,与曼哈顿计划无缘。而对原子弹举足轻重的也不是他的相对论,而是那同样由他首创,却始终让他爱恨交加的量子理论。

真正领衔实现了海森堡未能做到之壮举的却是一个由他过去同事、朋友和学生组成的强大团队。他们中的主力正是包括西拉德、维格纳、泰勒、弗兰克、费米、贝特、威斯科夫等一大批因为纳粹迫害而逃离欧洲的犹太物理学家。他们也有着如斯莱特、惠勒那些曾经在欧洲的量子力学圣地游学、镀金的少壮。当然,还有曾在美国各个大学校园中聆听索末菲、玻尔、玻恩、海森堡、狄拉克等人巡回讲座的年轻人。而最为出乎意料,他们这一方的“大脑”竟是曾在剑桥和哥廷根镀金,与狄拉克相交甚欢的那个纨绔弟子奥本海默。

毫无例外,他们都是以玻尔、海森堡为代表的哥本哈根学派的成员,或者是在其熏陶下学习、掌握量子力学的新一代。

原子弹的爆炸不仅宣告了第二次世界大战的结束,也标志着人类进入核能量的新时代。从世纪之初贝克勒尔在铀矿石中发现放射性,经过卢瑟福、玻尔、爱因斯坦、海森堡、薛定谔等人的不懈努力,量子的概念不再只是为了解释黑体辐射、光谱数据的权宜之计,也不再局限于看不见摸不着的微观世界。它伴随着原子弹那眩目的闪光、骇人的蘑菇云进入了寻常人家的视野。

1945年8月6日和9日分别在日本广岛(左)、长崎爆炸的原子弹所产生的蘑菇云。

原子弹的成功又一次无可辩驳地宣示了量子力学的正确性。而在那战火辉煌的年代,爱因斯坦对量子力学完备性的质疑只是杞人忧天,无人再问津。

惠勒只是愧疚他们的动作还是太慢了。他的一个弟弟曾在1944年惨烈的意大利战场上寄回一张明信片,上面只写有两个字:“快点(hurry up)!”拥有历史学博士学位的弟弟了解哥哥曾经与玻尔一起研究过原子核裂变,早就猜想到他是在后方参加研制威力强大的新武器。但弟弟已经等不及了。明信片寄出几个月后,他在战场上捐躯。


(待续)


Wednesday, January 27, 2021

量子纠缠背后的故事(卅二):二度难产的诺贝尔奖

在那个让物理学家人心振奋的1930年代初,已经问世30年、逐渐被接受为学界最高荣誉的诺贝尔物理学奖却在1931和1932年连续两年空缺。在瑞典的评奖委员会人员眼里,当时居然没有值得表彰的人选。

这个奖上次出现这种状况时还是1921年。那时的委员会为爱因斯坦的资格争执不下只好暂时搁置颁奖。老资格的阿伦尼乌斯和古尔斯特兰德认定爱因斯坦的理论不符合诺贝尔遗嘱中设定的条件:为人类福祉做出显著贡献的“发现或发明”。

当43岁的奥森在1922年加入这个委员会时,他成为其中第一名理论物理学家。他也同样认可“发现或发明”应该是确切的实际结果或被实际证明的预测,不能只是理论的推断。

但他机灵地施展乾坤大挪移,以爱因斯坦在光电效应中发现而且被证实的规律解开了死结,让委员会避免了难以摆脱的尴尬。由此,爱因斯坦最引人注目的相对论从未得到过诺贝尔奖的肯定。但他的光电效应解释基于量子理论,却为后者的获奖另辟蹊径。在爱因斯坦获得被延迟的1921年奖同时,玻尔搭上顺风车赢得1922年的物理奖。作为量子理论的创始人,他俩得以双星联袂,倒也不失为诺贝尔奖的佳话。

几年过后,阿伦尼乌斯和古尔斯特兰德相继去世,奥森成为委员会中首屈一指的权威。爱因斯坦和玻尔的旧量子理论也已成为历史,被新一代的新理论迅速取代。

从1927年开始,新理论的代表人物薛定谔、海森堡相继获得提名。他们的呼声也随着理论被广泛接受而逐年增高。奥森每年兢兢业业地审查、报告所有被提名人的贡献。他指出新量子力学还只是数学推理,没能带来切实的“发现或发明”。那几年,物理学奖延续传统,接连颁发给实验物理学家。获奖者中包括发现光子散射的康普顿和发明云室的威尔逊。

1929年的诺贝尔奖终于别具一格,授予了理论家德布罗意。他那奇异的物质波有了实验证明,成为货真价实的新发现。随后的1930年,物理奖又重回实验领域:拉曼(Chandrasekhara Raman)因为在光散射中的新发现成为印度也是亚洲的第一个科学类诺贝尔奖获得者。

薛定谔和海森堡在那几年中一如既往地获得多人提名。奥森也始终如一地坚持他们的理论不满足“发现或发明”的条件。他还指出这个新理论也不像索末菲的旧量子理论那样包括了狭义相对论,尚未完成。

于是,当年爱因斯坦成就斐然却连年无法获奖的戏剧在薛定谔和海森堡身上重演。甚至有人模仿奥森当年的暗渡陈仓,在提名中强调海森堡曾在最早尝试计算氢分子光谱时提出因为两个原子核自旋方向不同会出现两种不同的氢分子(分别为“正氢(orthohydrogen)”与“仲氢(parahydrogen)”),即“自旋异构体(spin isomers)”。这个预测已然被证实,应属于与爱因斯坦光电效应相当的新发现。奥森对这一说法倒没有异议,但调侃如此成就应该为海森堡提名化学奖。

这一次,他们内部的争执甚至超过了十年前,最终导致1931和1932两年持续未能发奖。按照诺贝尔的遗嘱,当年空缺的奖可以在下一年补发。但如果下一年仍然没有合适人选,就只能永久地过期作废。1931年的诺贝尔物理学奖因而付诸东流。在那之前,这个奖还只在1916年时因为第一次世界大战而完全空缺过。

这个荒诞的局面自然让众多物理学家极其沮丧。也与十年前一样,从普朗克、爱因斯坦、玻尔到泡利、费米等重要角色都相继加入提名行列,试图施加压力扭转局面。玻尔过去的助手克莱因已经成为瑞典的知名教授,也积极地参与了游说。不料,转机在1933年意外地出现。

那年,狄拉克也获得了一个提名。作为后来者,他的声望远不如海森堡和薛定谔。他的理论也是在矩阵、波动力学基础上的延伸。然而,正电子在安德森的云室中的出现彻底改变了奥森的立场。因为狄拉克,量子力学终于有了与爱因斯坦光电效应、德布罗意物质波同样被实验证明的新发现。并且,狄拉克方程融合了狭义相对论,又去除了奥森内心中另一个障碍。

当1933年的诺贝尔奖揭晓时,物理奖既属众望所归又因其分配方式令人瞠目。在奥森的安排下,海森堡因“发明”量子力学并“发现”氢分子自旋异构体独享补发的1932年奖。1933年的奖则由薛定谔和狄拉克平分,表彰他们“发现”原子理论中的新方法。

海森堡很不好意思。他的矩阵力学是在玻恩和约旦发扬光大之后才真正“发明”了量子力学,不该由他独享这一殊荣。薛定谔因为与狄拉克分享而觉得平白无故比海森堡矮了一截,颇有微词。狄拉克则完全没有想到自己会栖身获奖行列。他对这一荣誉会带来的社交麻烦恐惧万分,第一反应是干脆拒绝。老道的卢瑟福提醒他那样只会招惹更多的注意力,狄拉克才很不情愿地踏上了领奖之途。

也正是由于诺贝尔奖委员会莫名其妙的运作,旧量子理论和新量子理论在相隔11年前后都出现了奖项难产后的联袂颁发。1922年时,爱因斯坦在东亚旅行,并未能与玻尔同台领奖。1933年底,海森堡、薛定谔和狄拉克同时来到了斯德哥尔摩,在那里的火车站不期而遇。

1933年12月9日,前来领取诺贝尔奖的薛定谔(右一;留意他的穿着)、海森堡(右二)和狄拉克(右三)在斯德哥尔摩火车站相遇。分别陪同他们的是海森堡的母亲(左一)、薛定谔的夫人安妮(左二)和狄拉克的母亲(左三)。

薛定谔与他的结发妻子安妮同来。仍然单身的海森堡和狄拉克则由他们各自的母亲陪伴。海森堡的父亲刚去世不久。狄拉克没有邀请他长大过程中专制、蛮横的父亲。与沉默寡言的狄拉克相反,他那从来没出过远门的母亲成了媒体明星,四处兴奋地为记者提供各种花絮。她也细致地观察着三位获奖者的表现,发现年长的薛定谔总想以三人之首自居,好出风头而不得;海森堡阳光热情;而她的宝贝儿子则总是拼命躲避着各方的注意力(但狄拉克也有出彩的一刻:在颁奖仪式上致辞时,他出乎意料地阐述起经济、社会问题并鞭笞资本主义制度的弊病,令举座茫然)。

10年前,爱因斯坦事后到瑞典补做领奖演讲后曾就近访问哥本哈根。那是他唯一一次踏足玻尔以及量子的大本营。这次,玻尔也邀请新一代的获奖者顺道来哥本哈根继续庆祝。曾经在那里病倒还惨遭玻尔“虐待”的薛定谔谢绝了好意。在玻尔那豪华的嘉士伯府邸里,海森堡意气风发,亲自上场为当地歌星的献唱提供钢琴伴奏。狄拉克却只是偷偷溜回自己房间休息。入夜后,玻尔又会去将他揪下来。客人已经散去,那是他们讨论物理问题的好时光。


很少参与诺贝尔奖提名的爱因斯坦最早在1931年10月致信委员会提名薛定谔和海森堡。他在信中直言表达自己的犹豫:那两人对量子力学的贡献彼此独立,又都相当显著。他们各自都当之无愧,不应该只是分享荣誉。但爱因斯坦却难以定夺哪一个更应该先得到嘉奖。他认为薛定谔的波动方程更有前途,因而是更高价值的成就(这里他特地加上脚注表明只是一己之见,不一定正确)。但在理论的突破上海森堡显然早于薛定谔,拥有优先权。最后,爱因斯坦决定:如果由他做主,他会把奖先发给薛定谔。

爱因斯坦在1931年10月10日写给诺贝尔奖委员会的提名信。(信头地址之“Caputh”是他的别墅所在地。)

他这封提名信发出的时间早已错过1931年的截止期,因而被当作1932年的提名。1933年,爱因斯坦只提了薛定谔,干脆没有再包括海森堡。也许属于意料之中,玻尔那几年持续提名海森堡和薛定谔,并一直将海森堡列在首位。爱因斯坦和玻尔都没有提过狄拉克的名。他们也绝不曾预料到最后的结局。

但爱因斯坦在这个提名上的彷徨也不只是薛定谔与海森堡之间的孰优孰劣。他在信中解释量子力学的贡献应该获奖的缘由时写道:“以我之见,这个理论无疑包含了终极真理的一部分。”

在量子力学的本质问题上与哥本哈根正统鏖战多年后,爱因斯坦也无法忽视量子力学——尤其是薛定谔的波动方程——在原子分子光谱、原子核衰变和人为嬗变、反粒子等一系列实际问题上所取得的辉煌成就。这样的理论即使不尽合理,也应该会有着其正确的一面。

只是,纵然有着正确的成分,他依然无法肯定量子力学已经是科学的真理。


当海森堡、薛定谔和狄拉克在北欧领奖欢庆时,爱因斯坦已经在美国安家落户。

1929年9月,就在美国股市大崩溃的前夜,在新泽西州经营百货公司的一家子急流勇退,将家族产业出售给纽约市大名鼎鼎的梅西百货公司。那兄妹俩都没有子嗣后代,便将套现的巨额财富的一部分与职工分享,其余全部用于公益事业。1930年5月,他们以500万美元起始资金支持的“高等研究院”注册成立。第一任院长弗莱克斯纳(Abraham Flexner)雄心勃勃,要把它建成一个自由学术的乐园。在这个别具一格的研究院里,学者们生活无忧,没有教学负担,无需参加无聊的会议。他们也没有任何任务指标、年终评比,可以如同诗人、作曲家一样心无旁骛地追求自己心目中“没用的知识”。(弗莱克斯纳后来以《无用知识的用处(The Usefulness of Useless Knowledge)》为题发表了他的办院宣言。)

这个诱惑显然对爱因斯坦有着特殊的吸引力。他在1932年回绝加州理工学院和牛津大学的盛情,成为这家研究院的第二位受聘专家。

当弗莱克斯纳询问爱因斯坦对薪金的要求时,爱因斯坦小心翼翼地提出每年三千美元的价码。弗莱克斯纳目瞪口呆,干脆撇开这位科学大师改与他夫人艾尔莎谈判。他们很快达成协议,支付爱因斯坦一万五千美元的年薪。那是当时美国也是全世界科学家的最高档次。(作为院长,弗莱克斯纳自己的年薪是两万美元。)

让弗莱克斯纳更为瞠目结舌的却是爱因斯坦提出的另一要求:必须同时聘请他的助手梅耶(Walther Mayer)。

梅耶是个年轻的单身汉,爱因斯坦完全不是像薛定谔那样醉翁之意不在酒。从1929年起,梅耶就一直担任爱因斯坦的助手。即使是爱因斯坦与艾尔莎每年跨大西洋到美国访学时,他的私人秘书杜卡斯(Helen Dukas)和梅耶都永远地伴随在旁。

与玻尔必须在同他人交谈的过程中才能有效工作的风格相反,爱因斯坦的创造性思维永远是他自己孤独的努力。自从普朗克和能斯特以特殊待遇将他聘入柏林大学之后,他就是一个不讲课的教授,也从来没有过自己的学生。他乐此不疲,还经常开玩笑建议政府应该雇用理论物理学家担任海岸灯塔的守灯人,让他们能有更多没有外界干扰的时间独自思考、发现。

但在进入50岁之后,爱因斯坦也深感力所不逮,无法再自己对付广义相对论、统一场论中越来越繁复的数学推演。梅耶是数学博士,正好成为爱因斯坦不可或缺的助手。几年下来,他赢得了一个绰号:“爱因斯坦的计算器”。

弗莱克斯纳心目中的高等研究院成员都是世界首屈一指的学界明星,梅耶显然不合要求。他非常不情愿从一开始就来上一个降格以求的先例。但在爱因斯坦顽固的坚持下,他也只好让了步。何况,梅耶也是犹太人,独自留在德国会前途莫测。

爱因斯坦在1933年10月上班时,那高等研究院还并不存在。他们只是临时在就近的普林斯顿大学数学系新楼中租借了几间办公室,等候自己的大楼破土动工。那时他们也只有寥寥五名正式成员,其中包括冯·诺伊曼和外尔。本来就每年在普林斯顿大学访问半年的冯·诺伊曼已经爱上了美国,趁这个机会扎了根。在哥廷根接替导师希尔伯特退休后席位的外尔收到聘请后犹豫了两年,几经反复。最后他还是在希特勒上台、自己精神崩溃后才下定决心投奔新大陆。

弗莱克斯纳虽然被迫接受了梅耶,却也只是给了他一个永久职位,并没有把他算作正式成员。爱因斯坦对这个安排不尽满意,但梅耶本人更让他失望。在人身安全、职业都有了保障之后,梅耶不再愿意专职为他人打下手。他也对统一场论也没有兴趣,一头转回了自己的纯数学研究。爱因斯坦还是不得不另觅助手。

或者说,他不得不热情面对主动找上门来的年轻人。那在普林斯顿并不缺乏。

第一个来敲他办公室门的是刚刚获得博士学位的罗森(Nathan Rosen)。他在麻省理工学院师从当年在哥本哈根的BKS论文风波中梦魇一场的斯莱特,曾做了统一场论方面的硕士论文。爱因斯坦很感兴趣,当即建议他来研究院“共同研究”。兴奋的罗森很快成为研究院的博士后。

按照欧洲传统,研究院每天下午3点供应茶点,让大家惬意地聊天交流。1934年的一天,罗森在下午茶时不经意地向爱因斯坦提起他曾经计算过氢分子光谱。他觉得那很奇妙:在量子力学中,氢分子的两个原子只能共享同一个量子态,无法存在各自独立的量子态。罗森觉得不可思议。他不知道爱因斯坦多年前已经在他的鬼场中看出这个“分离性”大问题。海森堡在为氦原子的两个电子构造波函数时也发现过同一机理。

他们的交谈吸引了旁边另一位年轻人的注意。那便是曾在加州理工学院与爱因斯坦和托尔曼合作发表过论文的波多尔斯基。离开加州理工学院后,波多尔斯基回到苏联老家,跟着正好在那里访问的狄拉克研究过量子电动力学。之后他也是在爱因斯坦的推荐下又来到高等研究院继续深造。

爱因斯坦、托尔曼和波多尔斯基当初发表的那篇论文没有引起注意,但波多尔斯基自己却印象深刻。当时他们设想在爱因斯坦的光子箱上开两个孔,让两颗光子同时向相反方向逃出。因为光子原来在箱子里处于同一个量子态,它们离开箱子后无论跑出多远,其波函数还是会紧密地联系着。

波多尔斯基意识到两个原子的氢分子和两个电子的氦原子其实都是开了两个孔的爱因斯坦光子箱。当两个原子或电子由于互相作用形成同一个量子态时,它们就会永远地联系在一起。如果这时让它们在空间上彼此分离,各自向相反的方向运动,那就是光子箱假想试验的一个更为直观的实现。他立即向爱因斯坦提议继续探讨这个非常有意思的问题。爱因斯坦微笑颔首。

近一年后的1935年5月4日,《纽约时报》冷不丁地发表了一篇题为《爱因斯坦攻击量子理论》的新闻。

1935年5月4日《纽约时报》报道“爱因斯坦攻击量子理论”的标题部分。

这篇报道的标题部分便提纲挈领地归纳了其全部内容:“【爱因斯坦】与两位合作者发现【量子理论】虽然‘正确’却还没有‘完备’”“【他们】看到存在更完备理论的可能”、“相信一个‘物理现实’的完整描述终将出现”。


(待续)


Wednesday, January 6, 2021

量子纠缠背后的故事(廿九):爱因斯坦的光子箱

当年轻的伽莫夫在1928年的夏天来到哥廷根时,他发现一个生机盎然的科学天堂。那里的导师玻恩却心情沉重。这个崇尚亨德尔音乐、曾经举办过“玻尔节”的大学城也是纳粹党的早期活跃基地之一。一些大学生正在偷偷地搜集整理教授中的犹太人名单,准备有朝一日实施清洗。玻恩是一个极力融入德国主流社会、对自己的犹太传统并不在意的知识分子,但他也不得不为前途忧虑。

45岁的玻恩正陷入严重的中年危机。他曾经与约旦一起完善海森堡的矩阵力学,为薛定谔的波函数提出几率解释,因而在量子力学创始人群体中占据重要位置。但他的贡献一直没有得到广泛赞誉,只是作为锦上添花而黯然失色。这几年,他眼睁睁地看着曾为麾下的泡利、海森堡、狄拉克、约旦都在学术上超越自己,真正引领着物理学的风骚。玻恩知道他已经落伍了。他曾以精通数学为傲,却竟然无法理解狄拉克和约旦所津津乐道的量子场论,甚至压根就提不起兴趣来。

玻恩当时还不知道,他的得意门生约旦那时还积极地在地下流传的小刊物匿名发文,为纳粹党的宣传攻势摇旗呐喊。玻恩更为焦虑的还是自己的家庭。他作风老派,却与妻子感情不合而长期分居。这时,他察觉到妻子已经有了外遇,小家庭随时可能分崩离析。

凡此种种,玻恩终于不堪压力精神崩溃。那年,他离开大学岗位,整整一年独自到野外远足、滑雪,在大自然中寻找自我。刚刚来到哥廷根担任助手的海特勒代替他承担了大部分教学职责。


还不到而立之年的狄拉克和海森堡却正春风得意。与爱因斯坦和薛定谔不同,他们还是快乐的单身汉。在第一次世界大战结束后异常繁荣、癫狂的“咆哮二十年代(Roaring Twenties)”即将落幕时,两人都在美国巡回讲授量子理论,尽情游览新大陆。这里的大学竞相开出丰厚的美元支票,足以让他们乐不思蜀。

当他俩在美国的中西部相遇时,海森堡提议干脆结伴横渡太平洋取道亚洲,完成一次环球旅行。也曾在哥本哈根镀金的一个日本老相识早就邀请他们访问日本,正好顺道。

1929年,狄拉克(左)和海森堡在美国芝加哥。

在完成各自的讲学任务后,他们在美国西部风景奇异的黄石公园会合,一起到旧金山搭乘日本邮轮,于1929年8月底抵达日本。在夜夜笙歌的邮轮上,海森堡尽显风流地活跃在舞会上。狄拉克总是独自坐在角落里观望。他很不理解海森堡为何热衷于跳舞。海森堡给他解释,与好女孩共舞会非常愉快。狄拉克沉思良久,仍然不解。问道:“可是海森堡,你在跟她跳舞之前,怎么可能知道她是不是好女孩?”

邮轮靠岸时,海森堡在甲板上愉快地接受了登船的日本记者采访。当记者抱怨找不到狄拉克时,海森堡也热情地表示他可以代替朋友回答一些问题。狄拉克当时正站在海森堡身旁,事不关己地欣赏着异国情调。

这是继爱因斯坦1922年来讲学后第二次有欧洲一流物理学家访问日本。爱因斯坦那次带来了相对论,狄拉克和海森堡则带来了量子力学。他们为日本物理学界打开眼界与国际接轨起了相当大的作用。

日本的行程结束后,他俩才分道扬镳。海森堡继续乘邮轮经印度回德国,狄拉克却渡海到他向往的苏联,乘坐西伯利亚铁路火车横跨欧亚大陆。

两个英气勃勃的物理学家都没意识到世界正处于一个大变动的前夜。


1929年10月25日,美国纽约证卷交易所的股市价格在早晨开门后急剧下滑,拉开了“大萧条”的序幕。大西洋彼岸的德国首当其冲。1920年代也曾是德国的黄金时代,有着一战之后经济和文化的稳定、蓬勃发展。然而,虽然战后的经济封锁已经解除,德国依然背负着战争赔款的沉重负担。表面上的繁荣基本上依靠来自美国源源不断的贷款。

当美国突然自顾不暇时,原已显露疲态的德国经济顿时一落千丈。大批工厂破产倒闭,失业人口在1930年激增至300多万。被暂时遏止的通货膨胀也再度冒头,重新回到战争刚结束时的凄惨和混乱。

在啤酒馆政变失败后曾备受打击、一蹶不振的纳粹党在1930年9月的国会选举中起死回生。它们原来在国会577个席位里只占有区区12席,这一次却骤然赢得107席,一跃成为仅次于社会民主党的第二大党。

玻恩只是最早感受到潜在威胁的极个别科学家。在1930年代来临之际,象牙塔中的物理学家仍然是受社会尊重的高级知识分子,保持着养尊处优的地位。几年前因为相对论被当作“犹太物理学”饱受攻击的爱因斯坦认为希特勒只是“存活在德国人饥饿的肚腹上。一旦经济条件复苏,他的重要性就会立即消失。”

那年10月,第六届索尔维会议照常在布鲁塞尔举行。

洛伦兹去世后,组织索尔维会议的重任落在郎之万的肩头。在以“光子与电子”为主题的第五届会议的三年后,量子力学的主战场已经从哲学性的争执转为实际的应用。郎之万将1930年的会议主题定为“磁性”。

磁铁和金属在磁场中的表现早就是物理学的常规问题。德鲁德和洛伦兹在世纪之初以微观的电子理论大体解释了这些宏观现象。但他们那时所能依据的只是经典物理,有着很多缺陷。海森堡、费米等人将量子力学的新规律——尤其是泡利不相容原理——应用于固体中的自由电子气,立刻就有了长足的进展。在海特勒、伦敦和伽莫夫分别向分子与原子核进军的同时,量子的先锋也已经进入日常生活所熟悉的固体领域。

与三年前的盛宴相比,1930年的会议不再那么引人注目。金属的磁性也很难与物理学的基本哲学相提并论。但爱因斯坦在这次会议上显然醉翁之意不在酒。还是在旅馆的餐桌上,他面对玻尔坐着,不紧不慢地又抛出一个假想试验。它与磁性毫不相干,却是三年前他们针锋相对的故伎重演。

设想有一个箱子,里面有着很多横冲直撞的光子。爱因斯坦慢条斯理地描绘着,你可以称量这个箱子的重量。箱子上还有一个非常小的窗口,可以在给定时间快速地打开然后关上。窗口打开的那一瞬间,可能会有一粒光子从中逃出。

玻尔聚精会神地听着。他觉得这个设计在原理上与上次那些单缝、双缝屏幕大同小异,没有新意。这时爱因斯坦缓缓地又补上一句:窗口关上之后,你可以再称一下箱子的重量。

话音未落,玻尔已经大惊失色。

三年前,爱因斯坦的一系列假想试验都被归结为对光子或电子位置、动量的同时测量。海森堡的不确定原理残酷地限制了这类测量的准确性,而爱因斯坦的种种尝试均未能突破这一禁锢。但不确定原理并不只是针对位置和动量的测量,还同样适用于其它类似的成对物理量,比如能量和时间。

玻尔发现爱因斯坦在这个新设计中用一个定时的机关打开箱子的窗口并迅速地关上。如果有光子从那里逃出,其通过窗口的时间便可以由这个定时机关测定。而在窗口打开的前后分别测量箱子的重量,又可以得知光子所带走的能量——因为相对论,能量与质量是等价的。这样,当光子逃出窗口的那一霎,我们既能确切知道它的能量也清楚当时的时间。

据会上一位目击者描述,那天晚上的玻尔犹如一只刚遭受一顿痛打的流浪狗,既灰头土脸又惶惶不可终日。如果爱因斯坦这个主意成立,量子力学的整个根基将被动摇,大厦岌岌可危。而这个简单明了的实验却让他一筹莫展,找不出其中的漏洞。海森堡、泡利、克莱默等也都是一脸茫然束手无策。

看着他们的狼狈,爱因斯坦面含微笑,一副胜券在握的悠然自得。

爱因斯坦(左)和玻尔在1930年索尔维会议期间。

一夜未眠之后,玻尔在下楼加入早餐行列时脸上又恢复了笑容。为了拆解这个新的智力游戏,他将爱因斯坦的泛泛描述像工程蓝图般仔细地描画出来,一丝不苟地琢磨了如何用弹簧和刻度称量箱子的重量,又如何用时钟定时控制窗口的开关。这时,他胸有成竹地向爱因斯坦解释:当光子离开窗口时,箱子重量发生的变化势必引起挂在弹簧秤上的箱子向上移动。这是称量箱子重量变化的原理。这个微小的运动却会使得箱子里的时钟在地球重力场中的位置发生变化。根据广义相对论,重力场的减小会导致时钟变快。这样,窗口机关开启的时间并不是当初设定的时刻。

玻尔描画的爱因斯坦光子箱模型。

这下轮到爱因斯坦惊讶地合不上嘴了。当然,玻尔并没有能力进行广义相对论的具体计算,那正是爱因斯坦的专长。尽管玻尔是在试图否证他的实验设计,爱因斯坦也立即施以援手,兴致勃勃地演算起光子逃逸时箱子移动所带来的时间变化。他果然发现,在这个前提下,对光子的能量和时间测量的准确性无法超越不确定原理的限制。

玻尔以子之矛攻子之盾,用爱因斯坦自己的广义相对论挫败了爱因斯坦对量子力学处心积虑的新挑战。这神来之笔不仅让他反败为胜,为哥本哈根诠释赢得历史性的胜利,也成为物理学界经久不息的美谈。


历史往往是由胜利者书写。爱因斯坦和玻尔在索尔维会议上的辩论也是一个实例。

他们在1927和1930年两次会议上的争论都发生在会下,大多是餐桌上的茶余饭后。所以辩论的内容没有出现在会议的纪要中。爱因斯坦会后除了在讲学中重复提到他的假想试验外没有留下过自己的文字版本。1949年,玻尔在爱因斯坦70岁生日纪念时详细地写下了那场思想交锋的回顾和分析。在那之后的量子力学史料往往都以玻尔的版本为主,辅之以海森堡等人的点滴回忆。他们显然也都偏向于玻尔。

于是,爱因斯坦在两届索尔维会议期间频繁挑战不确定原理,在玻尔睿智敏捷的回击下一败涂地的传奇与哥本哈根诠释的正统地位一样,成为量子力学历史的主旋律。

第六届索尔维会议大半年后,埃伦菲斯特到柏林拜访爱因斯坦。回家后,埃伦菲斯特立即在1931年7月9日给玻尔写信,详尽汇报了他们的交谈内容。他告诉玻尔,爱因斯坦其实早就接受了不确定原理,对位置、动量和能量、时间这些物理变量不可能同时精确测量不再存疑。

爱因斯坦也从来没有去设计一个“可以称重的”光子箱。他更不是去挑战能量与时间同时测量的精确度。那是玻尔自己的发明又一次将爱因斯坦引入了歧途。爱因斯坦的本意与前一次索尔维会议上提出单缝、双缝假想试验一样,在于量子力学中的局域性、系统之间的可分离性,以及这两个概念背后那至关重要的因果联系。

如果同时测量窗户开启的时间和箱子重量的变化,爱因斯坦承认这个测量的精确度的确会受到不确定原理限制。但根据玻尔的哥本哈根诠释,测量的选择会决定测量的结果。如果我们不去测量重量的改变,就能够准确地知道光子离开箱子的时间。反之,如果不去看控制开关的钟,也可以非常精确地知道光子所带走的能量。

问题是,这个测量并不一定要在窗户开启那一刹那进行,完全可以等个半年、一年之后。半年后,逃逸的那颗光子已经跑了相当远,与我们相隔着一个天文数字的距离:半“光年”或将近5万亿公里。再想象一下在那个距离我们半光年的地方置放一面镜子,就很有意思了。

如果在窗口开启的半年后我们选择仔细地看一下控制开关的时钟,那我们会非常准确地知道光子离开箱子的时刻。这样,我们也可以准确无误地预测那颗光子被镜子反射,在一年之后回到箱子的时间。只是我们不可能知道该光子的能量,或频率。

而如果我们没有去看那个时钟,却只是精确地测量了箱子重量的变化,那我们就能准确地知道那跑出去光子的频率,却对它会在什么时候回来完全没有概念。

我们在看箱子时所做的选择就这样会直接、瞬时地影响到那颗5万亿公里之外、几近无影无踪的光子所处的状态:它或者突然有了确定的频率,或者突然有了确定的所在地点,只因为爱因斯坦或玻尔随意地决定是好好地看一下时钟还是弹簧秤。

这是因为在量子力学里,本来浑然一体的波函数不会因为互相之间的距离变得遥远而脱钩。那颗光子即使跑到宇宙的另一头,也依然与箱子里的其它光子藕断丝连,无法“退群”。当某种测量在箱子所在地发生时,远在几万亿公里之外的波函数也同时发生了坍缩。

爱因斯坦早已发现这个不可分离性。还在1927年的第五届索尔维会议之前,他不得不撤回了自己即将付印的论文,放弃“鬼场”理论,就是因为他无法接受理论中出现的这一不可分离性。在他心目中,波函数这个性质呈现的是荒诞的超距作用,违反因果律。

即使在20来年后,当玻尔以非常详尽的笔调回溯他与爱因斯坦的争论时,他仍然以全部的笔墨描述爱因斯坦对不确定原理的挑战和失败。他没有提到过埃伦菲斯特那封信。也许他依然无法理解爱因斯坦背后的深意,也许他觉得这个变故不值一哂,也许他压根就没看到过那封信(埃伦菲斯特当时把信寄给玻尔的夫人玛格丽特,请她在玻尔不那么忙碌时再转交)。

深具施瓦本人之倔犟固执的爱因斯坦和木纳憨厚的玻尔都不谙辞令,绝非能言善辩之流。发生在他们之间的这场历史性对话也许只是一场鸡同鸭讲的美丽误会。(玻尔动用广义相对论的手法固然博彩,也获得了爱因斯坦的首肯,其实并不合逻辑。量子力学自身的内在矛盾不应该需要广义相对论来补救。)


索尔维会议结束后,爱因斯坦在年底远赴美国访问。那里加州理工学院的校长、曾经用实验证明了他光电效应预测的密立根盛情款待。爱因斯坦还参观了附近的威尔逊山天文台,拜访那里的天文学家哈勃(Edwin Hubble)。他引人注目地舍弃了自己的宇宙常数和宇宙模型,全盘接受了勒梅特、哈勃的膨胀宇宙概念。【详情参阅《宇宙膨胀背后的故事(十一):爱因斯坦错在哪里?》】

在广义相对论和宇宙学的讨论之外,爱因斯坦也没忘记量子力学依存的迷雾。在加州理工学院,他与物理学家托尔曼(Richard Tolman)和他的博士后波多尔斯基(Boris Podolsky)就光子箱的假想试验又进行了一番探讨,在美国的《物理评论》上合作发表一篇论文。这一次,他们在那个箱子上开了两个窗口,可以同时向相反的方向放出两颗光子。

尽管他无力唤醒沉睡中的玻尔和他的哥本哈根正统势力,爱因斯坦对量子力学本质的疑虑依然耿耿于怀,还没有放弃努力。


(待续)

Wednesday, October 28, 2020

量子纠缠背后的故事(廿二):玻尔的互补

1923年,爱因斯坦为了躲避当时德国日益严重的反犹太情绪乘邮轮到亚洲远航,错过了诺贝尔奖典礼。归来后,他到瑞典补做了领奖演说,并顺路去哥本哈根访问玻尔。那时,玻尔正忙着与克莱默、斯莱特折腾那篇BKS论文,最后一次试图维护光子的不存在。海森堡在慕尼黑侥幸通过博士答辩,前往哥廷根开启科研生涯。泡利则完成在哥本哈根的工作,转去汉堡大学任职。薛定谔才到苏黎士大学担任教授不久,而狄拉克还是刚刚来到剑桥的研究生。

在那个新量子力学诞生的前夜。他们都顾不上留意那年11月初在慕尼黑一间啤酒馆中开始的一个不大不小的事件。成立不久的“国家社会主义德国工人党”组织了一次约两千人的示威游行,在市中心与警察发生暴力冲突,造成多人死亡。

第一次世界大战之后的德国——尤其是慕尼黑所在的巴伐利亚地区——经历了连年“城头变幻大王旗”的动乱期,武装政变几乎是家常便饭。两天后,煽动“啤酒馆政变”的一个34岁年轻人被捕,以叛国罪判了五年刑。

仅仅一年后,他便获得释放。届时,爱因斯坦在推广玻色的统计和德布罗意的波,引起了薛定谔的注意。泡利正在发现不相容原理。古德斯密特和乌伦贝克揭示了电子有自旋。

在近一个世纪后的今天,发动啤酒馆示威的政党那冠冕堂皇的大名已经没几个人能认识。取而代之的是它耳熟能详的简称:纳粹。

那个当时默默无名的年轻领袖便是希特勒(Adolf Hitler)。

希特勒未遂的转变是试图效仿意大利墨索里尼(Benito Mussolini)的成功。一年前,墨索里尼的“国家法西斯党”组织了三万黑衫军进军罗马示威,以实力迫使国王任命他为总理,成功地掌握了国家领导权。

五年后的1927年是意大利物理学家、发明电池的伏特(Alessandro Volta;作为纪念,电压的单位以他命名)逝世100周年。墨索里尼借此机会不惜重金举行盛大纪念活动,提升国家自豪感。其中之一是在伏特出生、生活的家乡科莫湖举办国际会议,邀请世界各地著名物理学家共囊盛举。

来自14个国家的61名物理学家参加了这一盛会,包括普朗克、卢瑟福、洛伦兹、玻尔、劳厄、康普顿等12个诺贝尔奖获得者。另外还有爱丁顿、索末菲、玻恩等名家,以及少壮一代的德布罗意、海森堡、泡利等。还有可以算作东道主的费米。

泡利、海森堡和费米(从左到右)在科莫湖。


在琳琅满目的与会者名单中,唯独不见爱因斯坦。

26年前爱因斯坦正是在科莫湖与他当时的女友玛丽奇共享浪漫、导致她未婚先孕。他对这个旅游胜地情有独钟,后来还曾携全家陪同居里夫人一家在那里登山远足。但时过境迁,爱因斯坦倒不是因为往事不堪回首,而是不满墨索里尼实施的法西斯政策。他不愿意同流合污,独自抵制了这场轰轰烈烈的庆祝活动。


波乎?粒子乎?这是玻尔一个人躲在挪威的雪山中也无法逃避的问题。

自从新量子力学的诞生,玻尔就一直看着坚持粒子立场的海森堡和坚持波动的薛定谔针锋相对,几近势不两立。他自己的态度颇为中庸,却也落得两头不讨好。在试图说服薛定谔放弃物质波失败后,他与海森堡的亲密关系又在日复一日的争执中出现裂痕。

玻尔认定海森堡和薛定谔的争执只是他们在坚持各自的偏见。两人的理论已经被证明在数学上等价,分歧只在量子世界中物质本性的观念上:波还是粒子。

这也是一个无法调和的矛盾。粒子是局域性的存在,在任何时刻只能处于某一个地点。波则反之,像池塘中的水波可以在同一时刻覆盖整个水面,不局限于地域。无论是光子还是电子,它们或者会是弥漫无形的波或者会是一颗晶莹的粒子,二者只能取其一。可是实验证据却表明它们不可思议地同时既是粒子又是波。于是海森堡和薛定谔各执一词,谁也没法说服对方。

逃离研究所的杂事和海森堡的固执后,玻尔在宁静的雪坡上思路豁然开朗。他意识到其实并没有哪个实验发现光子、电子同时是粒子和波。只是有的实验看到它们像粒子,有的则看到它们像波。

如果像一百多年前的杨那样用光束去观察衍射、干涉,就会看到光的波动性。戴维森用电子束做了类似的实验,也同样地观察到了电子的波动性。在这一类实验中,却看不到光或电子的粒子性。

而如果将光束照射金属,测量它“打下”的电子时,这样的光电效应、康普顿散射实验所看到的光和电子却又都只是纯粹的粒子,没有一点波动迹象。

因此并没有证据表明它们既是粒子又是波。它们的波粒二象性只是在不同观察手段中的表现。

盲人摸象是一个几乎尽人皆知的古印度寓言。故事里几个盲人通过触摸了解大象的模样。摸到脑袋的说大象长得像石头,摸到象腿的认为像柱子,摸到尾巴却觉得像绳子……他们对自己的“观测”都非常自信,并认定其他人或者没摸对或者就是在蓄意撒谎。这样,他们争执不休,谁也不服谁。

玻尔领悟到人类眼中的量子世界与这个寓言如出一辙。当我们进行散射实验时,看到的是“大象脑袋”,于是觉得它像个粒子;而在做衍射实验时,看到的却是“大象尾巴”,便觉得它像波。正如大象不可能同时既像石头又像绳子,光子、电子也不可能同时既是粒子又是波。我们因此觉得不可思议,却没有意识到这些实验都只是看到了大象的一个局部。

在寓言的另外版本中,摸象的不是盲人。他们视力正常,只是在黑暗中摸索,结果与盲人无异。但后来当灯点亮时,他们都得以看到大象的真面目,于是认识到自身经历的局限。

客观的量子世界却没有为人类准备这样一个皆大欢喜的结局。玻尔认为我们无法点亮一盏灯,全方位地看清大象的真实形状。我们能做到的只能与那些盲人一样,有时摸到大象的脑袋,有时摸到大象的尾巴,却没有办法同时摸到脑袋、尾巴以及整个身躯。

在这样的情况下,人类所能做的不是被动地落入寓言的陷阱不可自拔,如海森堡、薛定谔那样不依不饶地要争出个你是我非。而是要认识到实验观测的局限性,互相合作,综合不同的意见。电子、光子以及其它一切量子世界的物质既不是粒子也不是波,它们只是在一定的观测条件下表现如同粒子,在另外的观测中又会表现得像波。这两个互为矛盾的概念其实相辅相成,不可或缺。

玻尔把这个对立统一的思想叫做“互补(complementarity)原理”。


兴致勃勃的玻尔回到他的研究所时,立刻得知留在那里的海森堡也有了突破性的新发现。

海森堡从粒子观念出发,得出其位置和动量不可能同时准确地确定的离奇结论。玻尔倒没有觉得这很奇葩。因为如果从波动的角度来看,粒子作为一个有一定局域性的波包,不可能同时具备确定的频率(动量)和位置。那是一个经典波动理论中已经熟知的现象。他建议海森堡同时兼顾波动说的视角,即刻引起弟子的反感。

但更令海森堡不满的是玻尔的进一步分析。海森堡的发现来源于量子力学中的乘法不对易性,这样的不对易并不只局限于位置和动量,还有时间和能量。它们所揭示的是一组组新的矛盾,无法同时准确地把握。但在玻尔看来,它们也正是需要同时兼顾,才能“互补”地描述、理解粒子的运动。

与粒子和波那一对矛盾不同,位置与动量的矛盾并不是完全的非此即彼、水火不容。前者有如明眼人在黑暗中摸象,摸到脑袋的绝对摸不到尾巴;后者却有着一定的交集,可以点起昏暗的油灯同时看到脑袋和尾巴的模糊外貌。但也仅此而已。如果他们凑近去看清楚脑袋,就无法看到尾巴。反之亦然。那大象的脑袋和尾巴——位置和动量——永远不会同时真切地呈现。海森堡以数学推导而出的那个由普朗克常数决定的极限相当于油灯所能提供的亮度上限。在那不够明亮的照明下,同时看到脑袋和尾巴的清晰度被限制。

那也就是位置与动量、时间与能量这一类既对立又互补的矛盾双方最可能和谐并存的极限所在。

这便是玻尔向海森堡提议的“更深入、敏锐的分析”。他要求海森堡撤回他已送出的论文,一起将这些尚待成熟的思想深化、扩展为更一般的互补原理。

处于重大发现亢奋中的海森堡完全没能听进导师的言语,只觉得被当头浇了一桶凉水。玻尔一回来就不由分说地给他挑了错,还企图把他的新发现贬值为玻尔自己思想中的一个特例。他实在无法接受玻尔的这番指手划脚,两人因此闹了个不欢而散,及至互不理睬。

玻尔最早的学生、助手克莱因那时正好回研究所工作。无可奈何的玻尔只好向他求救,临时代理海森堡的职责。早在哥本哈根久经考验的克莱默听到风声,赶紧嘱咐克莱因要小心翼翼,不要自不量力地卷入这番强强之争。

可怜的克莱因再度陷入他已经熟悉的无穷循环。每天,他在研究所里随身陪伴在玻尔左右,兢兢业业地记录他不断嘟囔出的语句。第二天一早,玻尔又会指令他丢弃记下的那一切,再次从头开始。夏天到了,玻尔携全家离开城市去海滨度假,自然也带上了克莱因。整个假期,玻尔都在与克莱因关上门反复推敲。一向热忱支持丈夫的玛格丽特惨遭“遗弃”。她只能暗自神伤,独自带着五个儿子享受这个家庭假日。

玻尔没有太多的时间。他早已决定要在即将来临的科莫湖伏特纪念会上发表他的新思想,并提交了一个振聋发聩的题目:《量子理论的基础问题》。

传统上,海森堡的发现在中文教科书里被称作“测不准原理”。这在现代被正式改为更准确的翻译:“不确定原理”。“不确定”这个用词也来自玻尔。虽然海森堡拒绝了导师的指令,抢先发表了自己的论文。他还是在后加的尾注中感谢了玻尔的更正、指导,包括这一术语。

中文翻译的偏差却也并非空穴来风。海森堡那篇长达26页的论文给人印象最深的还是他对用高能光子观测电子轨迹假想试验的全面、细致分析(那也正是玻尔给他指出其中纰漏之所在)。尽管他随后又提供了数学推导,证明位置和动量之不能同时确定来自它们的不对易性,是量子力学的本性,当时很多物理学家也都误解了他的发现是一种“测不准”的技术性缺陷。

海森堡相信他的发现揭示了量子力学又一个独特的本质。如果位置、动量乃至轨迹这些经典的概念无法被严格定义,它们只能被完全舍弃。量子是一个不同的世界,我们习以为常的语言不再适合,只能代之以随矩阵代数、波动方程,乃至狄拉克正在搭建的新架构形成的抽象但严谨的数学语言。

玻尔对这个激进的革命性理念深不以为然,觉得过于草率、肤浅,也违背了他几年来一直强调的“对应原理”:量子的世界必须在一定条件下与经典的世界对应,能够天衣无缝地回归经典物理。这当然也包括位置、动量等那些在经典物理中举足轻重的概念。

而且,即使是量子力学也不能只是抽象的数学模型,必须接受实验的检验。玻尔指出所有实验能测量的物理量都是位置、动量这样的经典概念。那些矩阵、波函数等新的量子“语言”,恰恰无法在实验中直接探测。

物理学是实验科学。但玻尔和海森堡都开始意识到实验测量在量子力学中似乎在扮演新的角色。在海森堡的假想试验里,要看到一个电子的所在,必须用光子去探测,那同时就会把电子“击飞”,改变了它的位置。这个测量本身在干扰被测量的系统,实施测量的物理学家也就不再只是一个局外的观察者。

玻尔还更进了一步。在他的互补原理中,测量手段的选择会直接影响到可能测量到的结果。如果一个物理学家做光电效应、康普顿散射那样的实验,他会看到光子、电子像粒子。如果他偏偏要去做衍射实验,他又只会看到它们如同波动。正如寓言中那些不明就里的人,他们如果去摸了大象的头就不可能摸到绳一般的尾巴——实验的设计先验地选择了实验的结果。

这简直匪夷所思。在他们那场情绪化的激烈争论中,玻尔和海森堡都没有意识到他们正在打开量子力学又一个潘多拉的魔盒。


那年夏天,泡利从汉堡赶来访问,试图调解玻尔与海森堡的矛盾。他也没能解开两人之间的死结,但私下里,海森堡开始向师兄承认玻尔可能更为正确。同时,爱因斯坦一年前对海森堡的忠告兑现了:海森堡没有因为担任玻尔的助手错过他的教授机会。莱比锡大学的席位依然还在等着他。当海森堡离开哥本哈根去莱比锡走马上任时,他还不到26岁,依然成为德国最年轻的正教授。

在距离上彻底摆脱玻尔的咄咄逼人后,海森堡才得以冷静地反思那过去的几个月。不久,他给玻尔写了一封忏悔长信,为自己过于急躁诚挚地道歉。他们亲密的师徒关系得以逐渐恢复。

当科莫湖会议在九月份开幕时,玻尔的论文已经不知道修改了多少遍,却依然未能定稿。好在因为纪念伏特的成就,会议前几天日程只是涉及电和与电有关的物理实验新进展、新发明,无关量子理论。玻尔一有机会就与克莱因还有来参加会议的达尔文、泡利一起反复斟酌。这时,他原来那个《量子理论的基础问题》大标题已经被悄然“降格”为《量子假设和原子理论的近期进展》。

参加科莫湖会议的物理学家们。


量子理论只在会议的最后一天才露面。那天安排了众多的专家发言,每人只有20分钟时间。洛伦兹宣读了他为古德斯密特和乌伦贝克做的演算,以经典物理证明电子自旋概念之不成立。那是他学术生涯的最后一篇论文。

不善言辞的玻尔在那区区20分钟内究竟讲了些什么没有确切的记录。可以肯定的是当时没有引起什么回响。对他的思路最熟悉的玻恩和海森堡在他之后做了简短发言,赞扬玻尔的新创见。其他听众则或者以为玻尔在重复他一贯老生常谈的哲学思辩,或者干脆就觉得他不知所云。

除了爱因斯坦,曾经在哥本哈根饱受玻尔煎熬但没有归顺的薛定谔也不在那会场上。那个夏天他与妻子安妮在美国巡回讲学,赢得那里几所大学的青睐。他一一谢绝了优厚的聘请,因为他正在等待着一个更好的消息。

那两年,柏林的普朗克一直在积极寻觅退休后的继承人。他最中意的是索末菲或玻恩。索末菲也已年届花甲,不打算再离开慕尼黑。泡利、海森堡等下一代虽然锋芒毕露,他们尚且年轻,还不足担当普朗克的席位。冉冉上升的中年人薛定谔遂成为最佳人选。

薛定谔为终于能与他最钦佩的学术领路人爱因斯坦在同一个学府中并肩作战而欢欣鼓舞,立即接受了聘请。在忙于新旧职务交替之际,他没能来科莫湖赴会。

会议结束后,玻尔、克莱因和泡利都没有急着回家。他们留在这个旅游胜地,又花了一个星期马不停蹄地继续撰写、修改玻尔的论文,终于将他那繁杂的思绪付诸文字。一个月后,又一个学术盛会将在布鲁塞尔召开。玻尔可以再度推出他的互补原理。

届时,他还会面对着爱因斯坦和薛定谔。


(待续)


Sunday, October 18, 2020

量子纠缠背后的故事(廿一):海森堡的不确定

1925年4月的一天,美国一家不起眼的西部电力公司实验室里发生了一次意外事故。一个储存液态空气的罐子爆炸,损坏了戴维森(Clinton Davisson)正准备做实验用的镍片。戴维森不得不将镍片重新加热去锈。当他重启实验,用电子束轰击这些处理过的镍片时,意外地看到了与以前不同的散射结果。他不明白究竟,只是兢兢业业地收集了数据写成论文发表。

三个月后,他越洋过海到牛津参加英国科学促进会的学术会议,非常惊奇地发现他这篇论文在那里引发了关注。作为实验室职员,戴维森还从没听说过德布罗意,更对电子可能是波的奇怪想法一无所知。

德布罗意一直在寻求实际验证他的波动假说。他经常像小时候一样跑到哥哥的实验室,鼓动他们用电子束代替X射线观测衍射现象。当初把他带入量子物理的比他大17岁的哥哥已经是巴黎首屈一指的X射线专家。他没有把弟弟的恳求当回事,因为他们有着太多更为重要的实验。

爱因斯坦在推广德布罗意波的论文中也对实验物理学家发出呼吁,才引起了更广泛的注意。戴维森在牛津听说他那个偶然的实验可能已经发现了电子束的衍射时才如梦初醒。他急忙赶回实验室,与助手革末(Lester Germer)一起重新进行系统的验证。

1927年1月,他们发表论文证实电子束通过金属内部晶格形成的“狭缝”时会发生衍射。因此,与光束一样,电子束也是一种波动。

在实验中发现电子衍射现象的戴维森(左)和革末。


戴维森和革末的结果直接证实了德布罗意的波动思想,促使德布罗意在1929年荣获诺贝尔奖。(他哥哥后来接替了他们导师郎之万在法兰西学院的教授席位,自己也几次获得诺贝尔奖提名。)

就在戴维森发现电子衍射的那一年,他所在的公司改组,变成隶属于美国电话电报公司的贝尔实验室。1937年,戴维森成为这个默默无名新实验室的第一个诺贝尔奖获得者。

与他分享这一殊荣的却不是革末,而是剑桥新一代的汤姆森(George Thomson)——卡文迪许实验室老主任汤姆森爵士的儿子。他在牛津的会议上听到关于戴维森实验的讨论后自己用不同的设计也验证了电子的衍射。相隔31年,汤姆森父子分别以发现作为粒子的电子和作为波的电子被载入史册。


1803年,杨在英国王家学会上展示光的衍射和干涉,宣告了牛顿微粒说的破产:光是波。一百年后,爱因斯坦在光电效应的解释中再度复活了光的粒子性,其后由康普顿的实验证实。

汤姆森爵士发现的电子在阴极射线管里以及卢瑟福的β衰变中显然是个粒子。然而,戴维森、革末和他自己的儿子却揭示电子束同样会发生衍射,也是波。

波乎?粒子乎?这不再只是理论、哲学的思辩。在新量子理论方兴未艾的年头,旧量子理论鼻祖爱因斯坦和玻尔都在为此伤透脑筋。无论是光还是电子,比较明显的答案是它们既是波又是粒子,即所谓的“波粒二象性(wave-particle duality)”。

然而,这又如何才能够避免自相矛盾?

爱因斯坦在这个问题上已经有了十多年的纠结。早在刚刚离开专利局的1909年,他在萨尔兹堡的德国科学界年会上以对电磁波压强的统计分析揭示光既含有波又有粒子的成分,并通过固体比热理论提出量子是一个普适的概念,同样适用于电子。

那是一个异常超前的思想。洛伦兹就很是不解,写信质疑:量子的能量与频率成正比,粒子只有在周期运动时才会有频率。金属中自由电子做直线运动,不存在频率的概念,如何能用量子描述?

爱因斯坦当时自然也没有好办法,但他已经坚信电子的运动会服从与光子同样的量子规律。在那之后十年里,他一直试图在麦克斯韦方程中引入普朗克常数,使之量子化,但一无所获。

十年后,德布罗意将频率与粒子动能直接相联的新思想和薛定谔方程的出现既证实了他的直觉,也终于让他明白自己所走的死胡同。薛定谔关注的是有质量的粒子,普朗克常数可以“自然”地出现在他的方程中。而光子没有质量,普朗克常数因而在麦克斯韦方程中会在方程两边互相抵消而不出现。因此,麦克斯韦方程其实并不需要量子化。

当然他也不是一事无成。无论是德布罗意还是薛定谔,他们的发现都直接来源于爱因斯坦的前期努力。薛定谔在他的波动力学论文中特别感谢了“爱因斯坦简短但极富远见的指导”,尤其是爱因斯坦当初补充索末菲原子模型的一篇论文对他的启发。

可能出于这一渊源,爱因斯坦一开始就没有对海森堡的矩阵力学有好感,认为他下了一个不可信的“大鸭蛋”。而当薛定谔发表波动方程后,他却立即写信祝贺,赞许道:“我确信你以你对量子条件的描述已经取得了一个决定性的进步。我也同样地确信那个海森堡-玻恩途径是一条歪路。”

爱因斯坦没有预料到这两个力学的分歧却只在肤浅的表面。在薛定谔证明它们其实是等价的同一个理论后,爱因斯坦没有因此消除对矩阵力学的疑虑,他反而随之对波动力学也产生了怀疑。

玻尔对随着新量子理论而出现的波粒二象性却没有同样的思想准备,骤然间老革命遇到了新问题。他曾极力坚持光只是波的传统观念,顽固地拒绝接受光子的概念,直到他的BKS论文被康普顿后续实验否定。电子的衍射更迫使他面对波和粒子共存这个棘手的难解之谜。

在“劝降”薛定谔失败后,他把几乎所有时间和注意力都倾注于自己身边的海森堡。他们在研究所展开了没日没夜、无休无止的争辩。

在海森堡的眼里,玻尔依旧坚持经典的物理概念,尤其是电子运动的位置和速度——经典物理中物体运动最关键的两个变量、动力学方程的基础。然而,在新量子力学中,它们已经退居了二线,让位于不明就里的波函数或矩阵。

海森堡认定位置、速度与电子的轨道、跃迁一样,都只是经典物理的残余,在量子力学中不再有位置:它们都不是实际的可观测量。

终于,两个亲密无间的师徒在旷日持久的辩论中变得不再能忍受对方的存在。

1927年2月,玻尔独自离开研究所到挪威的大山中滑雪。那本来是他们计划好要一起欢度的假期,但玻尔临时改变了主意。海森堡不仅没有介意,反而大松一口气,有了属于自己的自由和清净。

伴随着玻尔的离去,海森堡脑海里被玻尔灌满的位置、速度乱麻也逐渐消退,代之以重新浮现的是近一年前与爱因斯坦那番谈话。


1911年在卡文迪许实验室的年终晚宴上,卢瑟福眉飞色舞的一番讲话强烈地感染了年轻的玻尔,促使他离开老气横秋的汤姆森而转投在曼切斯特的卢瑟福。其实,那晚卢瑟福滔滔不绝的并不是他自己实验室的进展,而恰恰是汤姆森麾下的又一个新突破。

卡文迪许实验室里并不都是原子物理学家。年轻的威尔逊(Charles Wilson)研究的是气象。他观察自然界多姿多彩的云雾,希望能在实验室里重现、研究它们的形成。他设计了一个精巧的箱子,在里面装满过饱和的水蒸气。当他突然拉动活塞急速降低箱子里的气压时,可以看见水蒸气瞬时凝结成云雾。

云雾由微小的水珠组成。水蒸气是在箱子里残留的细小微尘辅助下凝结成水珠的。威尔逊仔细地清洁他的箱子,排除里面所有杂质,但他仍然能够看到云雾的形成,其中还有一条条貌似随机的线条出现。

实验室里的物理学家意识到那是因为总有宇宙射线在穿过那个箱子,它们的动能使水分子发生电离,代替尘埃帮助水珠凝结。那些细线正是射线这样留下的足迹。

这样,威尔逊无意之中发明了一个实时观察高速粒子运动的工具。卢瑟福等人如获至宝。他们不仅用它探测宇宙射线,还第一次能够直接看到放射性原子所发出的α、β粒子的踪迹。把这个被命名为“云室(cloud chamber)”的箱子置放于电场、磁场中,他们还可以测量带电粒子在电磁场中的加速、拐弯。甚至,他们还可以发现粒子在相互碰撞的过程。

云室照片一例,显示各种高速粒子的轨迹。


十多年后,当海森堡在爱因斯坦的公寓里信心十足地解释电子的轨道如何不可观测时,爱因斯坦反问:你没看到过云室中拍摄的照片吗(β粒子就是电子)?


爱因斯坦已经快50岁了,早已不是过去以马赫的逻辑实证思想开创相对论的那个小青年。成熟后的他认识到客观世界是既已的存在,并不需要人类去实证。倒是人类自己的眼光有着相当的局限性。面对与他当初一样年轻的海森堡再度举起物理定律只能包含可观测量的大旗,他轻松地回以一个笑话不能重复两次的调侃。

显然,爱因斯坦早已深思熟虑过。他提醒海森堡,把光谱线的频率、光强当作可观测量其实也只是一厢情愿。原子发出的光经过大气传播、棱镜折射等过程最终在照相底片或视网膜上成像后才成为所谓的观测。海森堡之所以能把这样得到数据看作可观测量,不过是他不加怀疑地接受了麦克斯韦的经典电磁理论,确信那一连串过程没有实质性地改变原子所发的光的属性。

其实,那些光谱线也并不比在云室中看到的电子轨迹更为真实、可靠。

所以,爱因斯坦完全出乎海森堡意料地指出:物理学并不是实验的观测决定理论,反而是理论在指导你观测——正如麦克斯韦的理论引导物理学家测量光谱线。

虽然没有完全被说服,海森堡不得不承认爱因斯坦言之有理。在没有玻尔的两个星期中,他苦苦地回味着那一番富有哲理的谈话。


一天晚上,烦躁的海森堡走上街头,像狄拉克一样在哥本哈根漫无目的地游走。他的思绪在寒冷的夜风中逐渐变得清晰。

爱因斯坦对光谱线观测的那一番剖析同样适用于云室的照片。云室里一条条的直线和曲线只是一连串不连续的小水珠。它们因为电子或其它粒子的经过而出现,却远远不是电子的轨迹。那中间隔着有太多的物理过程。

观察电子的轨道,还需要更为直接、精确的手段。而爱因斯坦和玻尔难以忘怀的其实是同一个问题:如何测量、描述电子的位置和速度。

“难道你连一个普通显微镜的原理都解释不了吗?”维恩教授在答辩时那句轻蔑的挖苦是海森堡挥之不去的梦魇。他时常还会不自主地回忆起那个场景,一次次默默地回应。

显微镜的确是实验室中很普通的仪器。用它可以观察做布朗运动的花粉、生物体的细胞等微小的物体。照射它们的光经过棱镜放大、聚焦后,肉眼看不见的细节会变得一览无余。然而,无论显微镜做得如何精致,它的分辨率最终会取决于照射光束的波长。要想看到细微的结构,必须用波长比它更小的光来照射。

如果要直接观察到电子的轨迹,海森堡想到,就只能用波长最小、频率也就最大的光——至少需要康普顿做实验时用的X、γ射线。

在他与爱因斯坦那一席长谈时,康普顿的研究又有了新的进展。康普顿效应不再仅仅是用光照射晶体中电子时测得的统计结果。康普顿还在云室中直接观察到一个光子和一个电子碰撞所留下的印记。他拍摄的照片清晰地显示了电子被光子击中后的反弹,无可辩驳地证明了光子的存在。1927年底,威尔逊和康普顿分享了诺贝尔奖。

海森堡突然醒悟。如果使用波长非常短的γ光去照射电子,那就不是传统意义上的显微镜:所用的光不再只是背景工具,而是直接干预电子运动的因素。它会像康普顿观察到的那样以单个光子与电子发生碰撞,将一定的动量、能量传递给电子。如果要看到云室照片那样的电子轨迹,就必须持续地用一个又一个光子去“照射”。但这样得到的数据并不是电子本来的轨迹,而只是电子在遭到一次又一次撞击后所偏离、扭曲了的轨迹。所以,电子自身的轨道依然无法观测。

但是,问题还更为严重。

当一个光子与电子发生碰撞时,利用康普顿的能量、动量守恒方程可以通过对光子碰撞前后的测量结果推算出电子在碰撞时的位置和速度。这个测量也有着同样的局限:对电子位置测定的精确度不可能小于光子的波长。

如果在想像中用波长无限小的光子去“照射”,便可以精确地找到电子的位置。但波长无限小也意味着光子的频率、能量和动量都是无穷大。这样强劲的光子会一下子把电子击飞而自身动量不受影响,也就无法测量到电子的速度。

要非常精确地测量到电子的速度,只能用频率极低的光子“温柔”地触碰电子。那样的光子波长就会非常大,无法测量到电子的准确位置。

在哥本哈根寒夜的街头,海森堡意识到玻尔那难以忘怀的位置和速度在量子力学中犹如鱼和熊掌,不可兼得。所能做到的只有折中策略:用一定频率、波长的光子与电子碰撞,同时获取电子的位置、速度数据。这两个数据都不会完全准确,各自带有一定程度的不确定性。

为了回应爱因斯坦的质问,年轻的海森堡发明了一个逻辑实证式假想试验。那正是爱因斯坦的拿手好戏。但他的思绪还没有终止。

泡利和狄拉克等人一直都在向海森堡抱怨,从他的矩阵力学开始的那个不对易乘法规律让量子力学变得不可捉摸。因为在数学上等价,不对易性也同样地出现在薛定谔的波动力学中。狄拉克揭示那是普遍的量子规律,是经典力学通过泊松括号走向量子化的台阶。但他们却也相继发现,这个乘法的不对易性不只是数学上的别扭,而有着真切的物理效应:因为位置和动量——也就是速度——相乘时不对易,量子力学无法同时描述这两个最基本的物理量。

如果先计算好粒子的位置,它的动量就会变得捉摸不定。反之亦然。在数学形式上,这其实是不对易乘法的直接推论。在物理上,这样的结果显然极其荒唐。纵是泡利、狄拉克,也没能破解这一怪诞的谜团。

海森堡恍然大悟,那正是他的假想试验在理论中的表现。从大街上回到住所后,他像在北海那个荒岛上那样又一次沉浸于严谨的数学推演。很快,他利用便捷的波动方程证明了一个匪夷所思的结论:同时测量粒子的位置和动量时的精度会有一个无法超越的总下限。这个极限直接来自不对易关系,完全由普朗克常数决定。因此,这是一个量子世界特有的新规律。

正如爱因斯坦所言,是理论在决定着什么是可观测量。


这是他又一个重大发现。海森堡不敢懈怠,立即写好了论文。他知道如果玻尔回来后介入,论文肯定会在他的反复修改中变得支离破碎面目全非,甚至不知道要等到何时才能面世。为了避免重蹈斯莱特的覆辙,海森堡壮起胆子,抢在玻尔回来之前私自将论文寄出。

玻尔度假回来后为助手的这一新发现欢欣鼓舞。他立刻指出了论文中的一点纰漏。正如海森堡所料,玻尔也批评论文没有能清楚、深入地阐述这个发现的本质和意义。他让海森堡立即撤回稿件,由他们共同修改后再重新递交。

早有预感的海森堡依然难以承受这心理压力,眼里不禁涌出了泪水。但他还是没有退让,倔犟地拒绝了玻尔的“无理”要求。在那之后,两人关系近乎破裂。他们整天在同一个研究所里,抬头不见低头见,却互相躲避,几乎不再交谈。

海森堡不确定原理论文封面。这是美国著名化学家鲍林(Linus Pauling)保存的印件,右上角有他的批注:“玻恩在哥廷根给我的”。


海森堡违背师愿一意孤行发表的论文长达26页。他在校对之后加了一个尾注,感谢玻尔在论文完成后提出的“更深入、敏锐的分析”和指正。在这个脚注中,他也许是在无意中也提到了玻尔与他辩论时所用的语言。

因为这是一个经典物理中不存在的新现象,海森堡没能把握如何定义。在论文中,他随意地使用了“不精确(inexactness)”、“无法确定(indeterminacy)”等词汇描述对粒子位置、动量测量时会出现的僵局。在后加的脚注中,他采用了玻尔的用词:“不确定(uncertainty)”

那一时刻的海森堡年轻气盛,正处于科学生涯的巅峰。他没有听从玻尔的规劝,也无法听进导师正迫不及待地要表达的观点。他压根没有想到玻尔独自在挪威的大山里滑雪时并没有闲着,也产生了他自己关于量子力学的新思想。


(待续)


Sunday, October 11, 2020

量子纠缠背后的故事(二十):狄拉克的变换

1926年也是量子力学不寻常的一年。

那年年初,玻恩在他正在访问中的美国波士顿收到来自英国剑桥的一篇论文,为海森堡的矩阵理论提出一个新颖的视角。他觉得非常地意外,因为那时他与约旦、海森堡合著的“三人论文”尚未问世,应该还没有人能明白那怪异的矩阵力学。那篇论文的作者是剑桥的研究生狄拉克,一个从未没听说过的名字。

自从玻尔谢绝卢瑟福的聘请后,剑桥不再拥有一流的量子理论学家,淡出了由海峡对面慕尼黑、哥廷根和哥本哈根金三角主宰的新天地。海森堡完成第一篇矩阵论文后曾到剑桥短暂访问,他没有在讲座上提及自己这个新发现。也不知道狄拉克是否与他碰过面。

狄拉克出生于英国西南的海滨城市。他父亲却是瑞士人,在当地中学教法语。作为第一代移民,父亲极为苛刻,强迫孩子们只能以法语与他交谈,稍有差错就会受到严厉的惩罚。在能够以法语会话之前,狄拉克和他哥哥、妹妹只能与母亲一起像仆人似地躲在厨房里吃饭。

聪明的狄拉克是三个孩子中最先学会法语的,因此被恩准上桌子与父亲一起进餐。但既为了避免犯错被惩戒也是作为抗议,他在餐桌上绝口不说一句话。

父亲的专横对孩子们造成了极大的心理伤害。他们几乎在与世隔绝中长大,家里从来没有客人,自己也没有朋友。后来,狄拉克的哥哥在25岁时自杀。那时狄拉克已经是剑桥的研究生,正处于事业起飞的前夜。

因为家境贫寒,他们兄弟俩中学毕业时都在当地大学修习实用的工程专业。然而事与愿违,他们毕业时遭遇第一次世界大战后的经济萧条,没能找到体面的工作。狄拉克又回学校从头开始学习应用数学。那精确、简练的数学语言立刻让他折服,从此一生追求如何用数学——也只用数学——描述自然界。爱丁顿日食测量证明广义相对论的轰动效应也把他的注意力吸引到物理领域。

他的努力终于得到回报,赢得一项奖学金去剑桥攻读博士学位。

孤独中长大的狄拉克不具备基本的社交能力。在剑桥,他过着独往独来、规律得如同机器人的生活。星期一到星期六是他学习的日子。他每天按时起床,步行到学校用功。晚饭再出去散步。星期天,他带上午餐到郊外四处游走。那是他放松大脑,不再思考学业的一天。

1927年,在乡间漫步的狄拉克。


英国大学的传统是学生以自学为主,由导师提供一定的指点。狄拉克因此在剑桥如鱼得水,学业急速长进。他的导师是卢瑟福的女婿、物理教授福勒(Ralph Fowler)。

福勒也是剑桥唯一能勉强跟上量子理论蓬勃发展的理论家,曾在海森堡来访时私下谈论过他的新进展。应福勒的要求,海森堡拿到论文的校样后就给他寄了一份。福勒又随手将它转寄给度假中的狄拉克,让他这个沉默寡言却聪明绝顶的学生先睹为快。

狄拉克读了后没觉得海森堡那复杂的数学背后有什么实际意义。直到十来天后的一个星期天,他照常在野外暴走、不应该考虑科学问题时,脑子里突然不听话地浮现起论文中不起眼的一小段。

海森堡坐在海岛巨石上等待日出时意识到他刚刚发明的列表计算有个毛病:两个表相乘的结果与它们的顺序有关。在普通代数中,加法和乘法是“对易”的:2加3等于3加2;2乘3也等于3乘2。减法和除法不对易:2减3不等于3减2。在他的新法则里,两个列表相乘时如果彼此交换顺序却会有不同结果,违反了乘法的对易性。

他直觉十分荒唐,只好在论文中很不好意思地指出那可能会是新理论的隐患。

狄拉克在他的数学研究中早已见到过不对易的乘法,不觉得会是个问题。但他不知道那也正是剑桥前辈凯利发明的矩阵代数的一个特征。他更不知道玻恩和约旦已经发现海森堡的矩阵力学中,代表位置与动量的矩阵相乘时不对易。它们不同顺序的乘积之差正好与普朗克常数成正比,说明那是一个经典物理中不存在的量子现象。

狄拉克只是隐隐觉得这个位置与动量乘法的非对易关系似曾相识,却想不起来在哪里见过。那天晚上,他破天荒地烦躁,一夜无眠。好不容易挨到早晨图书馆开门,他冲进去查阅经典力学的大部头著作,果然找到有一种叫做“泊松括号(Poisson bracket)”的数学构造。它在形式上与海森堡的不对易性颇为相像。

牛顿的动力学以“力”为中心。在普通物理中,力通常被定义为“物体之间的相互作用”。那其实是一句没有意义的空话——力也是一个看不见摸不着的假想概念。牛顿之后,一些数学家试图将他的动力学脱胎换骨,代之以更严谨的数学描述。在欧拉(Leonhard Euler)、拉格朗日(Joseph-Louis Lagrange)和哈密顿(William Hamilton)等人长达一个世纪的持续努力中,经典力学终于被彻底改写,有了更具普遍意义的数学形式。

在这个新的表述中,力被势能取代。物理体系及行为由其动能和势能所组成的“拉格朗日量”或“哈密顿量”描述。薛定谔构造的波动方程便采用了含有哈密顿量的形式。

泊松括号是法国数学家泊松(Simeon Poisson)在这个体系中发明的一个表达方式,用以构造所谓的“正则坐标(canonical coordinates)”。它其实与海森堡的非对易乘法没有关系。

但狄拉克却敏锐地看出其中一个奇异的联系:海森堡的矩阵力学与哈密顿式的经典力学并没有太大差异。如果将经典力学中的泊松括号重新定义为含有普朗克常数的数值,就可以直接“量子化”为海森堡的力学。

这样,狄拉克在经典物理和量子物理之间架起一座桥梁,也终于为玻尔那喋喋不休却捉摸不定的对应原理提供了一个数学基础。

与他的风格相符,狄拉克据此而作的博士论文有着言简意赅的标题:《量子力学》。那是有史以来第一部以量子力学为题材的学位论文——量子力学这时还未满周岁。

顺利赢得博士学位后,狄拉克又获得一份奖学金。在福勒的建议下,他决定留洋深造,到正在成为量子力学圣地的哥本哈根和哥廷根镀金。


1926年10月1日,玻尔在火车站接到了应邀来访的薛定谔。这还是他们俩的第一次见面。玻尔却没有心思客套,一碰头就忍不住向薛定谔发出一连串的诘问。

曾几何时,玻尔的原子模型揭开了量子理论的序幕。十年之后,他的电子轨道、量子跃迁等新概念已经被海森堡、薛定谔更新的理论撕扯得支离破碎,被不客气地划入“旧量子理论”。取而代之的“新量子理论”便是矩阵、波动以及狄拉克那还没人看懂的新力学体系。

虽然薛定谔已经证明了矩阵与波动力学在数学上等价,他和海森堡的分歧不仅没有消失,反而日益尖锐。在收到海森堡怨气满腹的来信后,玻尔邀请薛定谔来面谈,期盼能达成共识,将苏黎士的这位游侠也纳入自己的金三角阵营。

在自然科学中,物理学是最数学化的精确科学。无论是牛顿力学还是麦克斯韦电磁学,乃至爱因斯坦相对论,它们都已各自的方程式引领风骚。只要有了需要的方程,加之必要的边界条件,一切相关的物理问题均可迎刃而解。

薛定谔正是这样听从德拜的建议为德布罗意的波动找到了方程式。但他没料到这却带来更大的麻烦。如何理解那作为方程主体的波函数在物理学家中莫衷一是。可能是物理学史上第一次,严谨的数学语言不足以描述物理现象,需要外加辅助性的“诠释”。

薛定谔不能认同玻恩的几率诠释。他坚持波函数就是粒子的实在分布,运动是连续的波动过程而不存在所谓的量子跃迁。在哥本哈根的那几天里,玻尔日日夜夜地跟随在他旁边,就这个问题没完没了地“讯问”。终于,薛定谔病倒卧床不起。玻尔夫人玛格丽特精心照料,为他端汤送水。玻尔却还是固执地坐在床头,一个劲地探寻:“可是,薛定谔,你不可能真的会认为……”

当薛定谔终于逃离这个鸿门宴时,他身心俱疲,却依然固执己见没有归顺。

作为玻尔助手的海森堡明智地在这场争论中置身事外,只在近距离旁观、记录。他在内心里对玻尔立场不坚定、在与薛定谔的波动说眉来眼去颇有微词。但这时他也已经找到一个击溃薛定谔的利器。那却正是薛定谔的波函数。

就在薛定谔到来之前不久,海森堡也抽空研究了波动方程。他成功地计算出有两个电子的氦原子光谱。那是自玻尔推出原子模型以来一直未能解决、曾经让泡利在博士论文中束手无策的大难题,也是新量子理论的第一个重大突破。

海森堡也因此切身体会到波动方程在实际运算上的绝对优势,不得不承认自己的矩阵在这方面望尘莫及。

但同时,他发现氦原子那两个电子的波函数非同一般。

按照薛定谔那具备直观优势的图像,两个电子的波函数与一个电子的波函数不会有太大区别。它们是电子在三维空间的分布。具有两个电子的波函数无非是质量、电荷的总和会是一个电子的两倍,在形状上则会同时显现两个分立的波包。

然而,海森堡用来解决氦原子的波函数却没有那么直观。它是一个在六维空间中的分布:两个电子各有自己的三维空间。他也很容易地看出,这个结构可以直接推广到更多电子的原子,只是波函数所占据的空间维数会随之增多。铀原子有着92个电子,它的波函数就会有多达276个的空间维数。

这听起来似乎匪夷所思,但对已经精通微分方程的理论物理学家却并不突兀。在拉格朗日、哈密顿推广后的力学体系中,这样的抽象数学空间业已司空见惯。况且,数学家希尔伯特也在几乎同步地提供相应的数学工具——这个多维空间后来就被物理学家命名为“希尔伯特空间”。

虽然这样的空间只是一个数学上的便利。但它也显示波函数并不是薛定谔心目中的物质分布,倒是与玻恩的诠释相当合拍:波函数是电子各自在三维空间中出现的几率。众多的电子各有各的几率分布,互相分离但并不完全独立。它们在同一个波函数下依照薛定谔方程随时间、空间演变,其几率既各自为政又相互关联同步。


狄拉克正是在这个激情四溢的时刻来到哥本哈根。他在市区租住了一个房间,每天形单影只地按时上下班。傍晚,他喜欢随便找一趟公车搭乘到终点站,然后自己循原路步行回家,宁静地领略这个陌生都市的夜晚。星期天,他依然故我地独自在郊外暴走。

玻尔已经见识过太多在他研究所来来往往、性情迥异的年轻人。瘦长、孤僻的狄拉克是他唯一无法吃透的角色。他把狄拉克称作“最奇葩的人”。当玻尔察觉狄拉克对话时只用“是”、“不”两个单词时,他和人打赌看谁能迫使狄拉克说出第三个词汇。经过一番努力,狄拉克终于不得不回应出一个“不在乎”。

狄拉克与玻尔正好处于两个极端。玻尔的论文几乎没有数学公式,喜欢以冗长的句子没完没了地绕圈。狄拉克巴不得整篇论文完全以数学方程示人,根绝日常语言的污染。即便是在讨论时,他也惜语如金,力求以最简短、最准确的词句解释。如果有人不理解,他也只能原封不动地再重复一遍——他已经不可能再找到更好的表达方式。(多年后,他的名字在剑桥成为一个计量单位:一个“狄拉克”是每小时说一个单词的语速。)

玻尔经常被自己正阐述中的复杂语句搞糊涂,会习惯性地抱怨不知道应该如何结尾。狄拉克会冷冰冰来上一句:我们从小就学会了,如果你不知道怎样收尾,就不应该急着开口说话。

在玻尔的眼皮底下,几乎从不开口说话的狄拉克成绩斐然。

延续他博士论文中对矩阵力学的重新表述,狄拉克进一步推出更具一般性的“变换理论(transformation theory)”,为新生的量子力学提供了一个完备的数学根基。

在他的理论中,量子力学是代表量子态的矢量在多维希尔伯特空间中旋转的行为规律。如果在这个空间中选取不同的正则坐标,就会出现不同的“表象(picture)”。这些表象中既有着薛定谔的波动方程也有海森堡的矩阵代数。那两个理论不仅互相等价,而且都只是这个更普遍的变换理论的特定表现形式。

狄拉克第一次完整地统一了量子力学。

他还在论文的引言中开宗明义地指出:在这个变换理论中,波和粒子有着完美的和谐。以粒子为出发点的表象经过一个哈密顿变换后就能自然地成为波动性的表象。

于是,海森堡与薛定谔那势不两立的原则性观点冲突看起来也不过是过眼云烟。

美中不足,狄拉克没能独享这一构建量子力学根基的荣誉。几乎同时,玻恩的助手、同样精于数学的约旦也独立发表了同样内容的论文。


在新一代的弄潮儿中,1900年出生的泡利最为年长。海森堡比他师哥小一岁,而狄拉克和约旦又都是1902年出生。在1926年这个不凡的年份中,他们以25岁上下的青春岁月都相继进入了学术成就蓬勃而出的灿烂年华。

玻恩在1925年底去美国讲学之际,约旦交给他一篇自己刚刚完成的论文,请导师审阅后在他担任编辑的《物理学杂志》发表。玻恩随手把稿件放进行李箱,准备在旅途中阅读。不料直到大半年后他才又在箱底发现这篇被遗忘的文稿。

那正是量子力学日新月异的几个月。这一次,是狄拉克独立发表了同样内容的论文,导致约旦那被耽误的稿件不再具备发表意义。

1920年代的约旦。


爱因斯坦在完成玻色-爱因斯坦统计后没有意识到他的这个新量子统计——尤其是玻色-爱因斯坦凝聚——与泡利随后提出的不相容原理矛盾。爱因斯坦统计中的粒子会在低温时同时凝聚到能量最低的态。泡利却指出电子互不相容,不可能有两个电子同时占据同一个量子态。

海森堡在构造氦原子的波函数时发现如果将其中的两个电子互为交换,波函数的数值会改变正负号。正是这样的“反对称”可以阻止两个电子进入同一个量子态,满足泡利不相容原理。狄拉克随后做了推广,指出量子的粒子其实有着迥然不同的两类。在波函数中交换时不发生改变——即完全对称——的是遵从玻色-爱因斯坦统计的“玻色子”,它们的自旋量子数是整数。而包括电子在内还有另一类粒子。它们的自旋量子数是半整数,在波函数中交换时呈现反对称。它们不遵从玻色-爱因斯坦统计,需要另一个完全不同的统计规律。

虽然狄拉克因为玻恩的疏忽抢了约旦的先机,他也还没能成为这个新统计规律的创始者。在他之前,意大利的费米(Enrico Fermi)发表了同样的想法。

费米也是一个1901年出生的年轻人。他也曾经是玻恩的学生,但在人才济济的哥廷根自惭形秽,急流勇退。荷兰的埃伦菲斯特听说后,嘱咐学生乌伦贝克去探望。两个年轻人因此成为好朋友。乌伦贝克劝费米一定要见过和蔼慈祥的埃伦菲斯特后再决定是否放弃物理生涯。费米于是加入埃伦菲斯特的研究组,在那里重整旗鼓,最终成长为一代宗师。

1924年埃伦菲斯特(右三)与他的学生合影。左二是古德斯密特,右一为费米。右二是最先提出电子自旋的克勒尼希。左三廷贝亨(Jan Tinbergen)后来成为第一届诺贝尔经济学奖获得者。


尽管费米的论文相当粗糙,并没有细致地分析波函数中的对称性,狄拉克还是尊重费米的优先。他们的新发现于是被称作“费米-狄拉克统计”。相应的粒子叫做“费米子”。

约旦甚是失落。他在自己的专著中将之冠名为“泡利统计”。


沸腾年代中的海森堡也有着自己的烦恼。在哥本哈根担任玻尔的助手本来是他的梦想成真。随着时间的推移,他却感到这个职务有着难以摆脱的负担。

玻尔研究所扩建后,玻尔一家搬出原来主楼里的寓所,改居隔壁新楼中的所长套间。他们原来的卧室则成为助手的客房。与来访的薛定谔一样,住在所内的海森堡感觉玻尔在这里如影随形,无所不在。他无法像狄拉克那样每天按时上下班,因为玻尔会随时出现在他的办公室或寓所,几小时几小时地连续讨论如何诠释量子理论。他们常常如此争辩到深夜,甚至通宵达旦。

在这紧张的工作节奏中,海森堡最渴望的是能有一点自己静心思考的时间(他能够在哥本哈根解决氦原子光谱也还是因为那时玻尔得了重流感,有两个月没上班)。因为他始终无法忘怀在柏林与爱因斯坦的那一席交谈。


(待续)


Saturday, October 3, 2020

量子纠缠背后的故事(十九):玻恩的几率波

海森堡非常地郁闷。

1926年应该是属于他的年份。他发现矩阵力学的第一篇论文在1925年9月问世。1926年2月,他与玻恩、约旦合作的“三人论文”发表,为以矩阵形式出现的量子力学拉开了序幕。一时间,世界各地的物理学家都一头钻进数学图书馆,急切地寻找任何可能与矩阵——从未听说过的怪物——有关的资料,祈望不要输在这条新的起跑线上。

1920年代中期的海森堡。

师兄泡利不仅最早见到从海岛上归来的海森堡,也是他第一篇论文的第一个读者。在多年用量子数拼凑原子光谱而凄苦忧伤、恨不得去当小丑演员后,泡利为量子领域终于有了数学的秩序欢欣鼓舞,感到生活又有了希望。但他还是很矛盾,唯恐这个新理论被玻恩用繁琐的数学糟蹋。海森堡看他患得患失,出言奚落,要他也拿出点自己的东西。泡利受刺激后埋头苦干了一个月,用师弟的矩阵力学完整地计算出氢原子的光谱。

在那之前,海森堡的矩阵还只是一个针对假想谐振子的简单模型。泡利的计算将其提升为解决现实问题的理论,验证了它的实用性和潜力。他在1925年11月完成这一壮举,论文在1926年3月发表。

仅仅十天后,薛定谔的论文横空出世,颠覆了海森堡的世界。


“嘿,你刚开始的时候知道会做出这么多有意思的东西吗?”14岁的依西(Itha Junger)天真地问薛定谔。她和双胞胎姐姐因为代数不及格一起被留级。安妮提议让薛定谔为她们辅导。依西自然地成为薛定谔的情色猎物,同时数学上也大有长进。

薛定谔圣诞节假期中发现他的方程之后,在1926年间创造力大爆发,六个月接连发表六篇论文,独立奠定了他称之为“波动力学”的新量子力学。他不无得意地向依西炫耀这辉煌的战果,并把小姑娘的问话录入这些论文结集出版的前言中。

薛定谔1926年初发表的波动力学系列论文之一。

两个世纪以前,牛顿为了能够准确地表述动力学发明了一个新的数学语言:微积分。物理学从那时开始正式成为系统、定量的科学。无论是牛顿力学还是麦克斯韦方程组,或者海森堡博士论文所研究的湍流,理论物理学家的职业生涯与微分方程难解难分。相应的数学工具也随之日新月异。

在雪山旅馆里,薛定谔只带了20年前出版的一本微分方程教科书。在终于构造出符合德布罗意关系的波动方程之后,他一时也没能求解出氢原子问题,要等到下山后在外尔的帮助下才成功。

随后,他们发现数学家希尔伯特等人已经对这类微分方程做了系统研究,刚刚出版了一本新教材。如果薛定谔当时有那新版本,氢原子问题在山上就可以迎刃而解。尽管如此,他和外尔也不过只花了两三天时间便自己找出了答案。毕竟,微分方程已经成为他们的“母语”。

在1926年3月问世的第一篇论文里,薛定谔以极其简短的笔调推出他的波动方程。与他为自己浪漫生活记录详尽的日记相反,他的科研笔记散乱无章,只有少量存世。如果忽略他所走过的弯路而以事后诸葛亮的眼光分析,他的发现过程相当简单:传统的经典波动方程是一个二次微分方程。按照德布罗意关系将其中的频率参数换成动能,然后再把动能拆解为总能量与势能之差,就可以得到薛定谔方程的数学形式。

与经典的波动一样,这样的微分方程和它的解都是连续的,没有分立的“量子”、“跃迁”概念。但薛定谔毫无困难地找出了两者的对应关系。

经典波动方程在特定的边界条件下会出现琴弦上驻波那样的解。希尔伯特把它们叫做“本征态(eigenstate)”。它们由一定的“本征值(eigenvalue)”标记。薛定谔方程也一样。它的本征态正是德布罗意所猜想的驻波,但更为丰富,是三维空间中的分布。这些本征态分布正好集中在玻尔轨道的附近,有着同样的能级。它们也自然地有着三个不同的本征值,正是那已经熟悉的量子数。

在经典的波动中,如果两个频率相近的波相遇,它们之间的干涉作用会产生一个新的频率:“拍频(beat)”。这个频率是那两个频率之差,正好满足了玻尔轨道“跃迁”的能量关系。但它们不像“跃迁”那样具备无法理解的瞬时、断裂,而是与经典物理无异的自然、连续过程。

这样,薛定谔的新方程同时为玻尔的轨道和德布罗意的驻波提供了坚实的数学基础。但他既不需要玻尔那些无中生有的规则,也不用像海森堡那样人为地构造不连续的表格。量子的不连续性以本征态、本征值的方式在连续的方程中自然涌现,无需任何先验的注入。


为了用可观测的光谱参数表述原子模型,海森堡在不知情中重新发明了矩阵代数。这对物理学家是一门新的语言,如同拗口、难懂的外语。几个月下来,只有泡利有能力用矩阵求解出最基本、最简单的氢原子,其他人都未能有所建树。

泡利对薛定谔论文的第一反应非常负面。如同他把玻尔认可自旋称为“哥本哈根邪说”,他把薛定谔方程叫做“苏黎士的迷信”。但同时他也不由倒吸一口冷气:他自己使足浑身解数,花一个月时间才求解了氢原子。如果采用薛定谔的方法,那不过是轻松的举手之劳。

当然最神奇的是两个方法所得出的结果完全一致。

他们的导师索末菲、玻恩立场也在动摇。索末菲最初看到薛定谔的论文时直觉那完全是一派胡言,但很快改口说矩阵力学虽然是真理在手,却过于复杂并且抽象得可怕。薛定谔的到来是一个救星:波动提供了数学的便利和直观的图像。

刚刚发现电子自旋的乌伦贝克直接地表达了他们下一代的心声:“薛定谔方程来得正是时候。我们不再需要学习那莫名其妙的矩阵数学了。”

海森堡看到他预期的灿烂尚未开放就已经被薛定谔突如其来的乌云遮掩。随着泡利、索末菲、玻恩相继“倒戈”,他有着一种众叛亲离的悲凉。


当然,海森堡的名望也在急剧地上升。那年4月他得到邀请去柏林讲学。虽然新生的量子力学集中于索末菲的慕尼黑、玻恩的哥廷根和玻尔的哥本哈根所构成的“金三角”,海森堡觉得真正的物理中心还是在柏林。当他走上那里的讲台,看到第一排依次就座的爱因斯坦、普朗克、能斯特、劳厄——四位诺贝尔奖获得者——他真切地体验到自己正在迈进精英的行列。

他的演讲十分顺利。爱因斯坦随后热情地邀请他回家晚餐。他们一起走过柏林的大街时,爱因斯坦友善地询问海森堡的生活、学业及工作,气氛相当融洽。

等他们在爱因斯坦的公寓中坐定之后,爱因斯坦才突然发问:“你真的觉得电子的轨道不存在?”

海森堡早就在等待这一时刻。他胸有成竹地解释,“是的,你没法实际地观测电子的轨道运动……”爱因斯坦当然清楚他的来路,更直截了当地问道,“难道物理学中只能存在可以观测的物理量吗?”海森堡这下子倒真觉得诧异。他不解地反问,“难道那不就是你创立相对论时的基本思想吗?”

爱因斯坦狡黠地一笑,答曰,“也许是吧。但同一个笑话是不能重复讲两遍的。”

海森堡满心以为爱因斯坦会赞许他同样基于逻辑实证的矩阵力学。他不知道爱因斯坦半年前从玻恩那里获悉这个新发现时就一直持怀疑态度。他在给埃伦菲斯特的信中表示:“海森堡下了一个量子大鸭蛋。哥廷根那些人相信这个东西,我却不信。”

几个星期后,柏林的物理师生济济一堂,又一次听取了关于矩阵、波动最新进展的报告。主持讨论会的爱因斯坦有点烦,他最后总结:“我们一直都没有精确的量子力学。现在突然之间有了两个。你们都会同意这两个理论互不相容。哪个会是对的?也许没一个是正确的。”

不料,他话音刚落,席中的戈登(Walter Gordon)站起来报告:他刚从苏黎士回来,听说泡利已经证明了这两个理论其实是同一个。


访问柏林时,海森堡正面临一个选择。

他本来已经准备好再度去丹麦,担任玻尔的助手并同时在哥本哈根大学兼任讲师。莱比锡大学却突然给他发来教授聘书。年仅25岁就能够担任正教授在德国属于闻所未闻,是一个极其难得的机会。海森堡有点难以取舍,便询问爱因斯坦的意见。

曾经为敲开学术界大门历尽坎坷的爱因斯坦不假思索地回答:去跟玻尔干吧,你不会后悔的。他深信海森堡是一颗正冉冉升起的新星,以后不会缺乏莱比锡那样的机会。海森堡听从了爱因斯坦的建议。

薛定谔也在忙于四处讲学。7月,他来到慕尼黑。德国物理学会的地方分会恰好也在那里聚会。已经在哥本哈根任职的海森堡特意赶回来参加。薛定谔的讲演吸引了满屋子的听众。结束时,后排的海森堡又忍不住提问:你这个波动理论如何能解释光电效应、康普顿散射?

这时的海森堡已经有了博士学位,不再是四年前当众质问玻尔的那个大学生。但他毕竟还只是助手、讲师,比苏黎士大学正教授差了几个级别。依然对海森堡看不惯的维恩教授忍无可忍,站出来痛斥海森堡没有礼貌。

维恩也是薛定谔的老朋友。薛定谔还在滑雪营地中琢磨他的方程时就一直与维恩通信报告进展。这时维恩信心十足也越俎代庖地向全场听众宣布,毋庸置疑,薛定谔教授肯定很快会找出办法来的。他转头又忠告海森堡:年轻人,你要明白我们现在再也不需要那莫名其妙的量子跃迁了。

在老权威面前,海森堡无计可施。在场的索末菲也没有出手辩护,让海森堡颇为失落。他只好给玻尔写信告了一状。玻尔阅后,即刻发信邀请薛定谔到哥本哈根一叙。


对海森堡来说,薛定谔是一大威胁。这并不是因为后者抢了他的风头:波动方程在数学计算上远远比他的矩阵简洁实用。海森堡最忌讳的还是薛定谔物理观念上的反动。

正如爱因斯坦所担忧,这两个几乎同时冒出来的新量子力学彼此水火不相容。它们重新点燃了物理学家在粒子与波之间持久的争执。海森堡的诘问打中了要害:薛定谔的确没法解释光电效应和康普顿散射,因为那是很明确的粒子行为。在爱因斯坦以光是粒子成功解释光电效应的四分之一世纪之后,薛定谔的电子是波却又在重蹈过去的覆辙。

海森堡的矩阵描述的是粒子的运动,出发点是分立、量子化的能级;薛定谔的方程却只有连续的波,作为本征值的能级之出现只是数学上的巧合。海森堡坚持可观测量,薛定谔却反其道而行之,跟着德布罗意采用了一个看不见摸不着、甚至无法解释的波。

在海森堡看来,这一切完全没有物理意义。薛定谔则反唇相讥,指出矩阵繁复隐晦,不具备波动方程简单明了的直观物理图像。

不过,这新一轮的粒子与波争议与以往不同。双方不再停留在思辩层面,各自都有了精确、完备的数学工具。这为他们貌似势不两立的分歧提供了一个切实的可比性。

连爱因斯坦都没有料到,这个原则性的立场之争只延续了区区几个星期。泡利率先声称他从数学上证明了矩阵和波动力学其实完全等价,不分彼此。与他许多发现一样,泡利只是在口头、书信中与朋友做了交流,懒得写论文正式发表。还是薛定谔几乎同时做出了自己的证明,发表于他那年第三篇论文:《关于海森堡-玻恩-约旦与我自己的量子力学之间的关系》,论证了二者的严格等价。

粒子乎?波乎?它们竟然在两个鸡同鸭讲的数学语言中殊途同归。


1925年12月,玻恩在完成他与海森堡、约旦合作的三人论文后启程去美国进行为期五个月的讲学访问。在那期间,他集中精力用矩阵力学计算两个粒子的碰撞过程。虽然有着雄厚的数学功底,他也没能取得进展。回到德国后,他看到薛定谔的论文极为震惊,立即确认那是更为优越的数学工具。但从粒子碰撞的实例中,他意识到那波的概念亟需澄清:到底是什么在波动?

1920年代中期的玻恩和他的儿子。

物理学家早已熟悉了两种不同的波。一是日常所见的水波、声波。它们是所处媒介的脉动:水或空气分子小尺度协调一致的振荡在大尺度上形成波动。波动的幅度便是分子振动的强度。另一种是电磁波。在以太被爱因斯坦的狭义相对论摒弃之后,电磁波没有媒介,是电磁场自身的振荡。电磁波的幅度是相应电磁场的强度。

德布罗意没有明确说明过他那伴随着粒子的波是什么。相应地,薛定谔干脆把他方程中描述振幅的变量直接称作“波函数(wave function)”——不管是什么波。

但薛定谔自己并无怀疑。他认定这个波是实实在在的,为电子或其它任何有质量的粒子提供了一个直观图像:它们不是只处于空间一个地点的粒子,其质量、电荷都同时弥漫于一个范围。波函数描述了它们的空间分布。

为了回应海森堡的质问,薛定谔试图把波函数的分布限制得非常狭窄,可以近似于粒子。这样的波在经典理论中也有例证,即“波包(wave packet)”或“孤立子(soliton)”。无奈,他的量子方程与经典波动方程一样,让这类局域性的波不稳定,随时间会很快耗散变为宽广的分布。显然,电子并没有表现出这样的行为。

玻恩对粒子的孤立特性深信不疑。在哥廷根他办公室的隔壁,因为探测到水银原子能量不连续而刚刚获得诺贝尔奖的弗兰克每天都在实验室里忙活。他的盖革计数器在不断地鸣叫,每个声响都意味着一颗粒子的抵达。他不是在计量什么波函数的分布。

通过对粒子碰撞的演算,玻恩清楚地看到薛定谔的物质波无法自圆其说。当一个粒子遭遇障碍时,它对应的波会像池子里的水波遇到石头一样在石头周围蔓延开来。能够被盖革计数器一个个计数的粒子不可能这样地“散开”。玻恩因此确信必须彻底扬弃薛定谔引以为傲的物理图像,只保留他那有效的数学形式。

在与爱因斯坦的频繁通信中,玻恩早就熟悉他这个老朋友曾提出的“鬼场”概念。为了给光子赋予波动性质,爱因斯坦曾设想作为粒子的光子是在一个鬼场的导引下运动,它在空间某个地点出现的几率取决于鬼场在该点的强度。

玻恩意识到薛定谔的波其实就是爱因斯坦的鬼场。它不是薛定谔所认为的物质、电荷在空间的分布,而只是标记粒子在某个地点出现的几率。这个几率随时间、地点的变化便是薛定谔方程所揭示的量子力学规律。

粒子相撞时,它们相应的波函数会同时向四面八方扩散。那不是粒子本身的发散,而只是这个粒子有着向各个方向飞离的可能性。玻恩于是指出,在量子力学里,我们不再能确切知道一个粒子碰撞后会往哪个方向飞,而只能计算它飞向某个方向的概率。

当粒子以一定几率“出现”在某个地点时,它依然会是一个完整的粒子,可以被盖革计数器捕捉、记录。它也会像经典的粒子一样再度碰撞,因此会出现海森堡所忧虑的光电效应和康普顿散射。

这样,在量子世界里,粒子的运动不再有确定的行为、结果。它们都取决于概率。

1926年年底,玻恩发表了他这个基于几率的波函数诠释,为量子力学天翻地覆的那一年划上句号。他特别指出这个想法源自爱因斯坦。

爱因斯坦却没有领情。他给玻恩写信曰:“量子力学的确洋洋大观。但我内心里有个声音在告诉我这还不是一个确实的答案。这个理论说了很多,却还没有让我们更接近那个‘老家伙【意指上帝】’的秘密。无论如何,我确信‘祂’不会掷骰子。”


(待续)


Monday, September 21, 2020

量子纠缠背后的故事(十七):海森堡的矩阵

海森堡万万没想到他会在毕业时栽一个大跟斗。

索末菲从美国讲学回来后,海森堡也从哥廷根回到慕尼黑。虽然他在哥廷根的时间并不长,也已经足以让那里的玻恩给爱因斯坦写信报告:“海森堡绝对是与泡利同等的天才。”索末菲当然深有同感。他安排只上了三年大学的海森堡直接提交博士论文——正与泡利一样。

海森堡最突出的科研成果是在反常塞曼效应的解释中引进半量子数,曾引起广泛争议。为避免不必要的麻烦,索末菲建议海森堡另起炉灶,做一项流体力学的湍流研究作为学位项目。

湍流属于已经成熟的经典物理,只是繁复的数学计算使其成为难题。这对海森堡来说自然不是问题,他很快完成了论文。那是1923年7月,他也只有21岁。

四年前,曾在柏林大学与普朗克一起研究黑体辐射的维恩来到了慕尼黑。他理所当然地是海森堡答辩委员会的成员之一。已经年届花甲的维恩对他在这里次于索末菲的地位颇为不满,也对物理学越来越倾向于索末菲式的理论研究、忽视他所钟情的实验牢骚满腹。偏偏那年海森堡还选修了维恩的实验课却屡屡旷课,丝毫没当回事。维恩一直在等待机会,给索末菲和他的得意门生一点好看。

海森堡的答辩在下午五点举行。他信心十足,有条不紊地对答如流。突然,维恩问起一个与湍流不相干的实验设计问题。海森堡没有准备,不禁张口结舌,说不出个所以然。老练的维恩随即连续发问,逐步降低问题的难度,试探学生的知识底线。海森堡疲于应付,漏洞百出。旁边的索末菲屡次插话,问一些理论问题试图缓解局面,但无法扭转维恩的一意孤行。

不久,维恩以戏剧性的口吻问道:“难道你连一个普通显微镜的原理都解释不了吗?”年轻的海森堡已经丢盔卸甲,无以为答。

在随后的评议中,维恩坚持海森堡的物理基础知识欠缺,打出罕见的零分。索末菲针锋相对地给了个满分。陷入夹缝的另外两位教授只好明哲保身,给了及格分数。平均下来,海森堡还是以勉强及格的成绩赢得博士学位。

从教室里狼狈逃出后,海森堡当晚就离开了慕尼黑,跑到哥廷根去找玻恩诉苦。厚道的玻恩安慰海森堡,并保证不会因此撤回已经给了他的助手职位。

经此突然打击,曾经在阿尔卑斯山中劳筋骨苦心志的海森堡万念俱灰。他给父亲写信,悲愤地宣告他的物理生涯已然终结。然后,他与早年的童子军伙伴们再度聚集,远赴芬兰远足,在大自然中又重新寻回勇气和信心。


1924年3月,在哥廷根给玻恩当助手的海森堡利用假期第一次来到哥本哈根。他渴望再一次当面请教玻尔,理清他越来越强烈的疑惑。时间治愈了他论文答辩的心理伤痕,却还无法消除他对量子理论的迷茫。

1924年,海森堡在哥廷根讲学。

玻尔的原子模型已经问世十年了,在氢原子、氦离子的光谱上成功之后裹足不前,似乎已经穷途末路。泡利的氢分子离子只是那些年无数失败中的一例。即使在那少有的成功背后,这个模型也只能给出光谱线的频率,无法计算谱线的强度。更糟糕地,它预测的谱线也并不完全与实验相符:在准确预测观察到的谱线同时,也经常会预测出一些不存在的“多余”谱线。

这说明玻尔的原子模型其实存在重大的缺陷。海森堡不得不怀疑那些少有的成功不过是瞎猫撞上了死老鼠,并不是真实的物理。

他在波尔研究所的客房里住了几天,一直没能见到玻尔。终于,玻尔突然出现在他的门口,二话不说告诉他收拾行李,第二天一早出远门。

接下来,这两个身体强壮、酷爱野外生活的师徒长途背包远足,在三天里徒步了大约160公里。玻尔带着海森堡领略了丹麦北部的山野风光,包括传说中哈姆雷特王子(Prince Hamlet)的宫殿。

玻尔解释道,这个才开张不久的研究所已经容纳不下越来越多的来访者。他已经买下旁边的地皮,正在筹建新楼以扩展。这些繁忙的事物占据了他太多的时间精力,只有这样逃出来才可能有时间思考。

在那几个难得的日子里,他们没有怎么谈论量子、物理,而是老朋友似地交流各自的成长经历,尤其是战争对生活所造成的影响。这对海森堡又是一次出乎意料的人生体验。他感受到玻尔与他熟悉的那些传统德国教授迥然不同,是一个真真切切的性情中人。

他决定接受邀请,半年后来哥本哈根接替泡利的职位。


回到哥廷根,海森堡终于第一次见到了他心目中的偶像爱因斯坦。

两年前,海森堡曾经在莱比锡的科学院年会上扑空,没能见到这位世界著名的物理学家。这一次,已经恢复正常活动的爱因斯坦来到哥廷根讲学。年轻的海森堡又一次得以单独与大师在街头漫步。

那正是玻尔的BKS论文问世不久的日子。刚从哥本哈根访问回来而对玻尔无限崇拜的海森堡迫切地想知道爱因斯坦的看法。虽然早已有了思想准备,他还是为爱因斯坦所表达的反对态度而震惊。他第一次切身领略,即使是最顶级的物理大师,他们之间也会有着尖锐的原则性分歧。

那年秋季,玻恩跟随着索末菲的脚步去美国讲学。落空的助手海森堡在玻尔的协助下争取到一笔资助,前往哥本哈根任职。

玻尔研究所的年轻人也正处于与海森堡相似的彷徨迷茫之中。BKS论文遭到了物理学界几乎一致的反对。德布罗意把电子看作波动的新思想同样地引起非议。虽然他的驻波模式为玻尔原子模型中的允许轨道提供了依据,玻尔等人却无法理解、接受电子的轨道运动如何能与虚无缥缈的波联系起来。

在一片思想混乱中,玻尔迫切期望能有新的突破。在他的指导下,克莱默正在尝试一个新的途径,他邀请海森堡协助。

在那篇BKS论文里,玻尔和克莱默——以及旁观的斯莱特——不仅放弃了传统的能量、动量守恒,还舍弃了玻尔模型的精髓:电子的轨道跃迁。十年前,玻尔做出他最精彩的突破:电子发出、吸收辐射的频率与其自身运动的频率无关,只取决于跃迁前后轨道的能量差。那是爱因斯坦不曾想象出的神来之笔。但也正因为这一“无关”,他的模型只能计算辐射的频率,无从推导谱线的强度。

他们于是重新想象原子内部是一系列谐振子。它们的频率与发射、吸收的辐射相同而共振,由此计算康普顿效应中辐射与电子的相互作用。这样,十年后的玻尔又回到了整整四分之一世纪以前普朗克计算黑体辐射的老路。

那BKS论文没有一个方程式,只是洋洋洒洒地论辩。为这个框架填补数学内涵便是克莱默的任务。按照玻尔的对应原理,电子如果是在非常高能量的轨道上运行,其行为会等同于经典物理。在那里,电子轨道自身的频率与其作为谐振子吸收、发射辐射的频率趋于一致。

玻尔原始模型中的电子轨道是圆形,只有单一的周期和频率。经过索末菲推广后,轨道变成椭圆,频率不再单一。这个问题在数学上很容易处理,可以应用所谓的“傅立叶变换(Fourier transform)”。克莱默和海森堡如此这般,将高能量轨道上电子的位置、动量随时间的变化处理成不同频率组成部分的叠加,试图从中找到不同频率的相对强度来对应于光谱线的强度。

他们获得了成功。不过那成功依然于事无补。这个变换只适用于能量非常高的轨道,无法相应地用于低能量的轨道。而那才是真正需要解释的量子世界。


那年年底,海森堡收到泡利来信,通告他刚刚作出的重大突破。他看到这位向来偏爱严谨数学推导、厌恶形而上学式夸夸其谈的师兄居然捡起了他丢下的第四个量子数,并无中生有地提出不相容原理不禁莞尔,立即回信调侃了一番。也许量子世界如此诡异,连泡利也无法洁身自好。

与师兄相比,海森堡对他在哥本哈根的进展很不满意。他没能找到消除量子理论疑惑的灵丹妙药,只能带着依然的满腹狐疑在1925年5月返回哥廷根。

倒是玻尔不知如何看到了一线曙光。他宣布:“现在一切都在海森堡的手里了,他得为我们找出一条摆脱困境的途径。”


回到哥廷根后,海森堡患上严重的季节性花粉过敏。他的整个脑袋红肿得不成人形,眼睛也睁不开。于是他不得不向玻恩请了两个星期假,自己带上几本书和一大叠演算纸乘火车到德国的最北端,然后搭船上了北海中的一座小岛。

那是一个面积不过2.6平方公里的荒岛,上面只有几间简陋营房供度假者使用。对海森堡来说,这个岛的优势正在于它的光秃:没有花粉。

在海风的吹拂下,他的症状逐渐消退,脑袋开始清醒。他整天在岛上徒步攀爬,阅读、背诵歌德(Johann von Goethe)的经典诗篇,间或也思考他的物理。

从牛顿开始,物理学家对物体运动的描述集中于位置和速度。只要知道物体在某一个时刻的位置和速度,牛顿定律就可以通过其受力环境准确地计算它在将来任何时刻的位置和速度。玻尔的原子模型也是一样:电子在某一时刻会出现在特定轨道上的某一位置,有着某个特定的速度。

然而,与牛顿所熟悉的物体不同,从来没有人真正看到过电子,甚至原子。泡利的教父马赫曾经因此断然否决原子的存在,因为这个存在无法实证。如果原子的存在尚且存疑,何况其内部的电子轨道?

泡利在那篇被爱因斯坦赞誉“对科学思想心领神会”的相对论综述中,曾为相对论的思想起源赋于逻辑实证的阐述。他以比爱因斯坦更为熟稔的笔触回顾了爱因斯坦如何通过一系列“假想试验”论证了牛顿绝对空间、绝对时间之不可能存在、引力与加速的无法区分,从而建立相对论的新理念。泡利在文中总结道:“在物理上,对实验中无法观测的物理量的讨论是毫无意义的……那些只会是假想概念,没有物理意义。”

从小就对哲学深感兴趣的海森堡对师兄的逻辑实证描述并不陌生。在这个小岛上,他突然领悟电子的轨道,以及它的位置和速度其实都是“实验中无法观测的物理量”。对于原子来说,实验中可以观测的物理量只有光谱:那一条条光谱线的频率和强度。除此之外,一切有关原子的描述都只是“假想概念”。

于是,他意识到必须整个地颠倒玻尔的原子模型:不能从假想的电子轨道出发计算光谱线,而应该是通过光谱的物理变量来推算电子的运动。其实,克莱默已经无意识地走上了这条路。在他们针对高能量状态的计算中,电子“轨道”经过傅立叶变换分解为不同频率的成分,那正是用光谱变量来描述电子的位置和速度。其结果是电子的位置和速度分别是两个数学多项式:各个频率成分的叠加。

在具备量子特性的低能量状态中,电子的轨道运动本身不再对应于辐射的频率。因此同样的做法无法适用。海森堡明白了那只是他们拘泥于轨道这个假想概念的结果。如果电子的轨道并不存在,电子的运动依然可以通过光谱变量推算。在低能量状态中,电子既不会像玻尔想象的在固定的轨道上运转,也不会在两个轨道之间“跃迁”。电子只是按照所有可能存在的谱线变量所决定的模式运动。

为了找出所有可能辐射频率的组合,海森堡发现他不再能用傅立叶变换后出现的简单多项式,而必须制作出一个表格。那是一种生活中很常见的表格。有些地图上会看到有大城市之间的距离表;在体育新闻中,循环赛各队之间比赛的比分也常常以这样的表格来展示。表格中的行和列分别是城市或球队,表中则列出它们之间的距离、比分等各种数值。

京沪高铁主要站点距离列表示意图。

海森堡制作的表格类似于城市的距离表。不同的是每一个“城市”代表原子的一个能级,城市之间的距离就是能级之间的能量差,也就是辐射的频率。这个列表可以非常大,因为电子的能级可以有无穷多个。他同时也可以另外做一个相同的列表,其中的数值不再是辐射的频率而是强度,也就是爱因斯坦辐射理论中的那个吸收或发射的可能性。

然后,海森堡仿造傅立叶变换的多项式以这些列表构造出电子位置、速度的表达方式,以及相应的物理规律。这时他需要用这些列表做代数运算,于是他不得不摸索出一套如何将两个表相加、相乘的法则。他费了好一番功夫才理清了这些头绪,发现这个新体系居然既有着逻辑上的自洽,也符合着物理的能量守恒。

这时已经是凌晨三点。他无法入睡,干脆跑到室外的海边,在黑暗中攀登上一块高高的、延伸到海面上的巨石,坐着等待日出。他并不明白自己刚刚发现了什么,但他知道“事情已经发生了(something has happened)”。


十来天后,海森堡终于下了岛。他在回程中特意先去了一趟汉堡,征求师兄的意见。泡利听了他一番语无伦次的描述,罕见地未能当机立断地指出其中谬误,只催促他赶紧写出论文发表。这给了海森堡莫大的信心。

又费了一番功夫,海森堡写出了论文初稿。虽然他对玻尔无比尊敬,他一时没敢向玻尔透露这一进展。在哥本哈根与克莱默合作的那几个月里,他已经领教过玻尔对论文大刀阔斧、反复无常的修改套路。为避免那样的命运,海森堡将论文就近交给了玻恩。然后,他自己启程前往英国剑桥履行早就计划好的学术访问,顺便又与童子军小伙伴们相聚,在英吉利海峡沿岸远足。

玻恩果然不假思索地就把论文转交给《物理学杂志》发表。但他放心不下海森堡的那个列表,尤其是他为列表发明的运算法则。熟谙数学的玻恩总觉得那一套似曾相识。直到他七月中去参加德国物理学会的年会时,他才想起来那是多年前还在学数学时见到过的“矩阵(matrix)”。

海森堡式的列表在古代就有过雏形。半个世纪前,剑桥的著名数学家凯利(Arthur Cayley)为其赋予严格数学定义,称之为矩阵并发展了相应的代数。海森堡自己琢磨出来的那些运算规则正是凯利矩阵代数的一部分。在那之前,矩阵代数只是数学的一个隐晦的分支,还从来没有过任何实际意义,故也不为人所知。

玻恩在会上找到泡利,提出一起将海森堡的新理论用凯利的数学规范化。不料泡利竟一口回绝。酷爱数学严谨的泡利这次居然声称他师弟的工作是一幅精彩的物理图像,容不得玻恩用某个纯数学体系糟蹋。

玻恩回家后只好向他的新助手约旦(Pascual Jordan)求教。约旦刚刚得到博士学位,却也是一位精通数学的鬼才。他们恶补了一番矩阵代数,将海森堡在小岛上的粗糙思想以完整的数学方式表达出来。海森堡度假回来后立刻也加入了这一行列。

1925年9月,海森堡自己的论文率先问世。两个月后,玻恩和约旦发表了他们充实海森堡数学基础的论文。1926年2月,玻恩、约旦和海森堡联名发表“三人论文”,一举奠定所谓的“矩阵力学”。

也在那同一时期,玻恩和海森堡相继开始使用一个新名词:“量子力学”。它标志着一个有别于牛顿力学的新力学体系的诞生。


(待续)


Sunday, September 6, 2020

量子纠缠背后的故事(十四):康普顿的光子实验

 与玻尔一席长谈几个月后,海森堡兴冲冲地来到莱比锡参加德国科学家年会。索末菲早就说过,那年代物理学界最值得见的只有两个人:爱因斯坦和玻尔。这次会议安排有爱因斯坦的主题讲座,海森堡翘首以盼。

在会场门口,他手里突然被塞了几份传单。那是萊纳德的几个学生在派发攻击以爱因斯坦为代表的犹太物理学的宣传品。他才知道爱因斯坦正在隐藏,没有来开会。学术报告由劳厄代劳。

海森堡深感失望。那天晚上,他发现自己的行李被偷窃一空,只好放弃会议回家。索末菲已经为他的下一步做了安排,去哥廷根的玻恩那里“留学”一年。

索末菲自己请了一年的假,远赴美国的威斯康辛大学讲学。虽然已经有了国际知名的迈克尔逊和密立根,美国在物理——尤其是理论物理——领域还颇为荒凉。但那里的美元正在显示其全球硬通货的地位,对进入恶性通货膨胀的德国人有很强的吸引力,去美国讲学渐成时尚。(爱因斯坦随魏茨曼赴美筹款之前也曾联系在美国(包括威斯康辛大学)讲学。但他要价太高,没有被接受。)

泡利已经毕业,离开慕尼黑到哥廷根担任玻恩的助手。他也是在那里的玻尔节上第一次见到玻尔。他的研究所正需要人手协助以德语写作论文。泡利二话不说就接受了邀请,很快又离开哥廷根前往哥本哈根。

他那时不知道他正成为量子物理的先行者,依次游历慕尼黑、哥廷根、哥本哈根三大重镇。海森堡很快也走上同样的征途。他的后面更会是成群结队的青年物理学家。


普朗克在战争结束后就进入了准退休状态。他和能斯特招聘来的爱因斯坦因为广义相对论的成功为柏林大学争得世界性的荣誉,但他们计划设立的理论物理研究所依然还只是爱因斯坦自己家里的那个阁楼书房——唯一的正式雇员是担任秘书的艾尔莎大女儿。与卢瑟福、索末菲、玻恩、玻尔等人身边聚集着年轻人而朝气蓬勃相反,爱因斯坦习惯独来独往,没有兴趣提携学生。在盛名带来的社会活动和困扰之下,他的学术活动也不再那么活跃。

1918年,卢瑟福终于在曼切斯特争取到一个新席位,热情邀请玻尔去担任理论物理教授。他满心期望能与这位杰出的弟子携手大干一番,建立新的科学中心。但那时玻尔自己的研究所已经破土动工,只能婉拒。

一年后,63岁的汤姆森辞去卡文迪许实验室主任职务,专心去担任剑桥历史悠久的三一学院院长。在他掌管的35年间,实验室赢得七个诺贝尔奖,拥有27名王家学会会员,一跃成为领先全球的科研重地。

剑桥毫无悬念地聘请卢瑟福接任汤姆森。卢瑟福也当仁不让。他把从麦吉尔到曼切斯特锤炼得如火纯清的风格全盘搬到卡文迪许,掀开历史新的一页。汤姆森也获得许可,时常到实验室继续从事研究工作。

但卢瑟福再也没能找到一个玻尔那样的“富有独创才能”的理论家。在他的领导下,卡文迪许以各种实验手段探测原子核的结构,成绩斐然。但他们同时也淡出了理论研究。那个自卢瑟福始的原子模型早已离开了英伦,伴随玻尔越过海峡,在索末菲和玻恩的协助下扎根于欧洲大陆。

玻尔在哥本哈根的研究所已经初具规模。他仿照卢瑟福的风格营造以年轻人为主的科研基地的梦想正在成为现实。他的威望因为诺贝尔奖也大为提高,吸引着欧洲各地的青年争取各种机会来这里镀金。

他和妻子玛格丽特在研究所中的小家庭也在急剧增长。他们一连串地生育了六个儿子(其中两个不幸夭折)。玛格丽特放弃帮助玻尔写论文,专心相夫育子。作为女主人,她也热情地帮助研究所接待、照顾络绎不绝的访客。她还尤其热衷于为当地的姑娘与这些外来的才俊牵线做媒,成就了好几对姻缘。

玻尔夫妇和他们的儿子们。


至少在学术上,玻尔也不再需要玛格丽特的协助。克莱因毕业离开后,荷兰的小伙克莱默(Hans Kramers)接替他作为玻尔长期固定的助手。在研究所里,玻尔也会随时抓住身边的小伙子,让他们在他自言自语或者与人讨论争辩时在旁边记笔记整理成文。这对于那些年轻人来说是一个既兴奋又惶恐的经历。他们可以在最近距离观察大师的思想过程,同时又必须绝望地试图捕捉玻尔那每一句口齿不清的嘟嘟囔囔。

无可争辩的是玻尔在这里享有至高无上的尊重和崇拜。泡利到来不久就发现,研究所里“玻尔是真主安拉,克莱默是他的使者”。


在身边的年轻人用他的模型积极地向光谱实验呈现的各种难题发动进攻时,玻尔的注意力越来越集中于量子理论的根本问题。索末菲在慕尼黑带着泡利和海森堡“随意”添加量子数、甚至半量子数拼凑光谱线的做法虽然是与他一脉相承,也已经让他与海森堡一样地疑惑。如何才能知道什么才是真实的物理?

玻尔为此提出一个“对应原理(correspondence principle)”:量子世界虽然独具风采,它在一定条件下必须趋近熟悉的经典世界,与经典物理的概念有着一一对应的关系。

在极限情况下回归经典是物理新理论的常规。爱因斯坦的相对论根本性地颠覆了牛顿的时空观,与日常生活的经验格格不入。但在运动速度远远小于光速时,狭义相对论的运动方程逼近牛顿动力学方程,相对论效应只是微不足道的高阶修正。广义相对论也一样:当质量非常小时,时空弯曲可以忽略而重新回到牛顿的世界。

量子是微观原子世界的新理论。玻尔相应地指出它也不能与熟悉的日常世界完全脱节,而必须存在“对应”。比如在原子模型中,如果电子的能量足够大,占据的轨道非常高,那里的量子数很大,轨道之间的间距非常小,便趋近经典的连续运动。他和索末菲最初引入的三个量子数正好对应于经典物理中三维空间的运动自由度。

所以,索末菲后来引入的那第四个量子数就无法理解,因为它在经典物理中找不到对应的自由度。

玻尔认为对应原理是鉴别量子理论的试金石,但其他物理学家研读之后都一头雾水。正如玻尔在散步时对海森堡坦白,量子世界不像相对论那样可以由速度、质量的大小平滑地过渡到经典理论。这个对应原理只是玻尔的泛泛而谈,没有数学方程可以应用。

首当其冲的索末菲摸不着头脑。他觉得那纯粹是玻尔自己手中的一根魔棒。克莱默也吹嘘道,对应原理只会在哥本哈根灵验,出了玻尔的地盘立即失效。


索末菲到美国讲学的目的是赚点坚实的美元。他没有想到会在那里得到学术上的收获。1922年11月,他在芝加哥参加学术会议时有了一个惊喜:中西部圣路易斯市华盛顿大学的康普顿(Arthur Compton)报告了一个新发现。

康普顿在一战之后到卡文迪许实验室留学一年。卢瑟福那时刚回来主事,汤姆森也经常到实验室工作。康普顿对他们印象深刻,跟着学习了光散射原理和X射线技术。回美国后,他年仅27岁就担任了华盛顿大学的物理系主任。

瑞利男爵和汤姆森不仅是卡文迪许实验室两代掌门人,也是光散射现象的鼻祖。瑞利分析光被空气中分子散射的过程,以“瑞利散射”解释了天空为什么呈现蓝色;汤姆森则研究了光与他发现的电子的散射,即“汤姆森散射”。在这两个散射中,光是麦克斯韦描述的电磁波。与通常的折射相同,不同频率的光在散射时会有不同的角度(“色散”),但其作为电磁波特征的频率不会发生变化。

康普顿在圣路易斯用X射线照射石墨中的电子,进行一个与光电效应相似的实验。不同的是他没有在意被打下的电子,而是测量被那电子散射出来的X光。他惊异地发现它们的频率与入射的X光频率不一样。散射光的频率比入射光频率稍小,两者之差由散射的角度决定。

康普顿在讲解他的散射实验。


这是一个很奇怪的现象。麦克斯韦理论中不存在电磁波在传播、反射过程中发生频率变化的机制。康普顿只能转而诉诸量子理论:如果X射线是爱因斯坦所说的那既有能量又有动量的光子,它与电子相遇时就不再是光的散射,而是如同两个粒子直接碰撞。碰撞时,粒子各自会有能量和动量的改变。这个变化对于电子是速度的改变,而在光子则正是频率会发生变化——因为爱因斯坦光子的能量、动量都与频率成正比。散射光的频率变小是因为入射的光子把一部分能量和动量传输给了电子。

这样,光子与电子的碰撞是一个简单的物理过程,只需要用能量和动量的守恒定律就可以轻易地求解。康普顿发现这样得出的结果与他的实验数据完全符合。

他在芝加哥的会议上报告了结果后,将论文投寄给美国的《物理评论》,直到半年后才得以发表。这家偏僻地方的杂志在欧洲本来不会引人注意。但远在论文问世之前,欧洲的物理学家就已经从索末菲兴奋的来信中得知这个“康普顿效应”的发现。


1923年7月,爱因斯坦在瑞典发表了他那迟到的诺贝尔获奖演讲后就近来到哥本哈根。这次轮到玻尔在火车站迎接。这是他们时隔三年后的第二次握手。

两人坐上有轨电车,立刻就展开了激烈的辩论,似乎他俩的交谈从来就没有中断过。过了一会,玻尔发现已经坐过了站。他们随即换乘反方向的车,不久又再次错过了下车。

那是爱因斯坦第一次也是最后一次访问哥本哈根。他们在电车上争辩的内容不为人所知,但可以肯定与康普顿的实验有关。半年之后,物理学家已经肯定这一效应无法用麦克斯韦的电磁波解释,只有光量子理论才能准确地给出实验结果:那是一个光子和一个电子的单独碰撞。

时隔六年后,物理学界终于完全接受了爱因斯坦的光子。

只有玻尔是个顽固的例外。


克莱默刚来到哥本哈根时,玻尔曾让他研究一下爱因斯坦的辐射论文。玻尔的原子模型可以解释光谱线的频率,却无法推导每条谱线的强度。爱因斯坦指出,自发、受激辐射是以一定的可能性发生。但在那篇论文中,这些可能性只是作为参数出现,无从计算。如果能找出推算的方法,就可以得出相应谱线的强度,填补一个巨大的缺陷。

不料,克莱默研读了论文之后对其中的光量子概念产生了浓厚的兴趣。他想象这样的一个光“粒子”如果与另一个“实在”的粒子发生碰撞会是怎样的情形,立刻就推导出康普顿后来才发现的公式。他兴冲冲地找玻尔汇报,这是他刚刚起步的科研生涯第一个有意义的突破。

性格温和的玻尔听后几乎大发雷霆。在他心目中,爱因斯坦那篇论文精彩非凡,就是那光量子不可接受。如果承认那样实在的光子存在,麦克斯韦的电磁学就会被彻底推翻。那是玻尔绝对不愿意看到的。玻尔不厌其烦,花了一整天功夫对克莱默软硬兼施,从科学、哲学高度反复论证光子不可能存在,说服他承认误入了歧途。

克莱默当晚就住进了医院。

他几天后才得以出院,随后绝口不再提光子,还烧毁了笔记,强迫自己忘却了这段痛苦的经历。在那之后,克莱默继续忠实地承担玻尔的助手。在后来的职业生涯中,他有所贡献,但再也没能表现出创新的锐气。

稍后不久,年轻的斯莱特(John Slater)在哈佛博士毕业后也来到哥本哈根镀金。他是第一个来到这里的美国人,还带来一个自己的新思想:爱因斯坦的光子是存在的,但同时也会有某一种波在引导光子的行为,使其运动符合麦克斯韦的波动理论。

这次轮到克莱默教训新手。他义正辞严地驳斥了斯莱特的想法,阐述了玻尔那光子不可能存在的信念。但玻尔和克莱默也认为斯莱特的文稿中尚有可取之处,值得花功夫修改后发表。于是,他们展开了一场典型的玻尔式协作科研的方式:日复一日,他们呆在一间办公室里。玻尔不停地来回踱步,嘴里嘟嘟囔囔。克莱默勤奋地笔记,捕捉每一丁点思想火花。斯莱特则只有在边上干瞪眼的份。

短短几个星期后,玻尔满意地划上了句号。这在玻尔的论文写作史上算是出奇的迅捷。但论文已经面目全非,不再有斯莱特最初思想的影子。相应地,作者顺序依次为玻尔、克莱默和斯莱特,按照他们姓氏缩写被称作为“BKS论文”。

当然,玻尔作为第一作者名至实归:这篇20页篇幅的论文洋洋洒洒,没有一个数学方程。

如果把光看作有能量、动量的粒子,它与电子的碰撞是一个高中学生就能够求解的两个方程,分别描述能量和动量的守恒。克莱默和康普顿都曾轻易地找出了答案。在康普顿论文问世之前,过去给索末菲担任过助手的德拜得到消息后,也很快地发表了他自己的推导。正因为其简单直接,康普顿效应极具说服力,无可争辩。

为了坚持光子的不存在,玻尔因此不得不釜底抽薪,根本性地否定动量、能量守恒定律。与爱因斯坦解释点光源发出球形的光波一样,玻尔认为这些经典的守恒定律只是在大量碰撞事件的统计平均中才成立,而单个电子受电磁波影响时动量和能量并不守恒。这样,康普顿效应那被广泛接受的解释就不成立了。

康普顿最初的实验只测量了入射和散射的X光频率,的确属于统计平均的结果。但即便如此,玻尔在论文中也需要构造出一个极其曲折复杂的新理论才能为康普顿效应提供一个另类的解析。

他的信心远不如他执拗的态度。论文完成后,玻尔不敢直接去询问爱因斯坦的反应,差使泡利去打听。泡利很快以外交辞令转告了爱因斯坦的反对态度。他无法转达爱因斯坦在给玻恩的私信中所发的牢骚:如果理论物理的未来是玻尔这样的做法,那么他宁愿改行去当街头修鞋匠或赌场发牌员。

康普顿在完成最初的实验后转到名气更大的芝加哥大学供职。他在那里招收了几个研究生继续完善这个实验,其中有从中国来留学的吴有训(Y. H. Woo)。他们以更系统、精确的实验证实了康普顿效应。欧洲的实验室也纷纷跟进。

就在BKS论文问世几个月后,新的实验证据便出现了:X光与电子的碰撞即使在单个过程中也满足动量和能量的守恒。那并不只是统计平均的效果,经典的守恒律在量子世界中经受了考验。

玻尔不得不面对现实。他承认打了一个大哑炮,唯一可做的是为BKS“举行一个体面的葬礼”。

斯莱特曾经为自己的想法得到玻尔的这番重视欢欣鼓舞,不断写信回家报告喜讯。随着他们“合作”的进展,他越来越垂头丧气,内心后悔没能自主发表最初的论文。一直到玻尔去世之后,他才公开承认在哥本哈根的那一年是他人生的最大梦魇。

即使在哥本哈根,在玻尔自己的手中,对应原理这根魔棒也不总是管用。


康普顿效应证实了光在与电子碰撞时所呈现的粒子性,奠定了它与波动性平起平坐的地位。1924年4月20日,爱因斯坦在德国一家报刊上发表文章总结:“所以目前有两个光理论。它们都不可或缺。我们不得不承认,在理论物理学家20年巨大的努力之后,还没发现两者之间任何逻辑联系。”

他和玻尔都没有料到,在惨不忍睹的BKS理论背后,一个新的机遇正在出现。


(待续)


Tuesday, September 1, 2020

量子纠缠背后的故事(十三):联袂诺贝尔奖

 瑞典化学家诺贝尔(Alfred Nobel)通过遗嘱设立他那举世闻名的奖项时,为物理奖规定的标准是“在物理中最重要的发现或发明”。如何诠释这简单的一句话是被指定审核、发放奖金的瑞典科学院及其评奖委员会成员的职责。

虽然已经出现过牛顿、麦克斯韦那样几乎毕生从事理论研究的大家(牛顿唯一亲手做的是光学棱镜实验),物理学在20世纪初还是被看作纯粹的实验科学。所谓“发现或发明”被自然地理解为实验室里、工业生产中实实在在的成果。理论研究中那些看不见摸不着的数学推演不过是为实验提供解释和线索,不属于独立发现。

自1901年开始颁发起,物理奖20年来的获奖者几乎是清一色的实验物理学家。理论家屈指可数:1902年洛伦兹凭借他对塞曼效应的理论解释“沾光”,与在实验中发现该效应的塞曼同时得奖;1910年,荷兰的范德瓦尔斯(Johannes van der Waals)因为他对气体状态方程的理论研究得奖。普朗克在1908年未能获奖固然是他运气不佳,很大程度上也出于评委对其理论“发现”的疑虑。

那个时代一些杰出的理论家如玻尔兹曼、庞加莱等在世时皆与诺贝尔奖无缘。

1918年,普朗克终于修得正果,因为“能量子的发现”获奖。那是第一个授予量子概念的诺贝尔奖。

曾几何时,诺贝尔奖也是青年爱因斯坦的梦想。他奇迹年的那四篇论文——布朗运动、光电效应、狭义相对论、质能关系——可以说每一篇都够得奖资格,虽然那些理论预测需要多年以后才陆续得到实验证明。到1918年时,他对自己会很快得奖早不再有疑,自信地将预期的奖金作为筹码与前妻玛丽奇达成离婚协议。但他没料到会发生的一波三折。

早在1910年,爱因斯坦还是苏黎士大学不引人注意的新任副教授时,物理化学家奥斯特瓦尔德(Wilhelm Ostwald)第一次向瑞典科学院提了他的名。仅仅几年前,奥斯特瓦尔德还是爱因斯坦广发求职信得不到回音的众多“愚蠢”大教授之一。爱因斯坦的父亲还曾专门给他写过一封信,低声下气地为儿子求助。

奥斯特瓦尔德自己在那年获得诺贝尔化学奖。他的提名没有引起注意,那年的物理奖归了范德瓦尔斯。

自那以后,爱因斯坦几乎每年都会得到多人的提名。与奥斯特瓦尔德一样,提名人大多把他的相对论列为主要贡献。奥斯特瓦尔德还特意提醒评委会,相对论已经是物理学的基础,并非哲学思辩。年复一年,评委会成员依然觉得相对论只是纸上谈兵,没有足够的实际验证。

这个局面在1919年发生了戏剧性的改变。那年,爱丁顿的日全食结果宣布得太晚,物理奖已经授予爱因斯坦当年的盟友、后来的政敌斯塔克。

但爱丁顿的结果不仅让爱因斯坦名闻遐迩,也让原来对广义相对论有疑虑的物理学家信服。那其中有老资格的洛伦兹,他立即在下一年提名爱因斯坦。那年,爱因斯坦获得了八个提名,在洛伦兹之外还有爱丁顿、塞曼、瓦尔堡和玻尔等知名人物。普朗克也为他提了名,但因为错过截止期无效。

诺贝尔奖揭晓时,全世界物理学家的眼镜同时掉下了鼻梁。获奖者是瑞士的纪尧姆(Charles Guillaume)。他可以说是完全不为人所知,因为发明有助于长度、质量精准测量的合金得奖。

那年负责评选的还是当年曾试图让普朗克和卢瑟福同时得奖的阿伦尼乌斯。他对爱丁顿的测量结果是否可靠有所怀疑。在收到那些支持爱因斯坦的提名信同时,他们也收到来自萊纳德等人的各种反对意见。在无从定夺的状态下,他们选择了更符合“发现或发明”标准的纪尧姆。这个人选让那些拼命反对相对论的人也摸不着头脑。

再下一年,爱因斯坦的提名人增至14位,包括了普朗克、瓦尔堡、爱丁顿、奥森。爱丁顿在提名信中将爱因斯坦与牛顿相提并论,应该是作为英国人能给予德国科学家的最高评价。

这一次,负责审理的是瑞典的眼科医生、诺贝尔生理与医学奖获得者古尔斯特兰德(Allvar Gullstrand)。他对物理不甚了了,却也兢兢业业地做了一番研究,写出50页的报告,认定广义相对论的验证还存在大量漏洞,不足以得奖。

即使在瑞典科学院内,这个报告也没能让人信服。但谁也不敢公开违拗德高望重的古尔斯特兰德。他们集体把头埋进沙里,做出一个折中选择:既不把奖颁给爱因斯坦,也不再发给他人,就让那年的物理奖空缺。

因为过程保密,爱因斯坦当时不可能了解这些内幕。但连年的错失已经让他对诺贝尔奖意兴阑珊。他的国际声望早就远远超越这个奖能带来的荣誉,奖金也已名花有主。所以,当他在1922年9月接到阿伦尼乌斯带有强烈暗示的信时,丝毫不为所动。


海森堡做梦也没想到过他会在哥廷根的夏日傍晚与玻尔单独散步。他有太多的问题要问,而最想知道的是这位名人的内心深处对量子理论究竟有着怎样的想法。

与玻尔一样,海森堡出生于知识家庭,父亲是慕尼黑大学的古典哲学、文学教授。与玻尔和他弟弟相似,海森堡有一个年龄非常接近的哥哥。他祖父掌管着德国最出名、普朗克40年前曾经上过的中学,那也是他们兄弟俩的学校。两人出类拔萃,学业一帆风顺。只有第一次世界大战的到来才打搅了宁静的生活。

高中的海森堡在战时、战后的混乱政局中召集小伙伴组织起队伍,加入当地类似童子军的组织。他们在慕尼黑城内维持秩序、搜寻食物,也经常深入附近的阿尔卑斯山里长途拉练、野营,在农庄里干活,劳筋骨苦心志。

一战后在山中农庄锻炼的少年海森堡(左三)和他的同伴们。


中学毕业后,他在1920年夏天进入慕尼黑大学。受父亲影响,他的兴趣在于哲学和数学。父亲为他安排与学校最著名的数学老教授面谈。当教授听海森堡介绍已经自学了相对论,便认定他再也不可能专心数学。于是,他父亲又建议他去找索末菲。

索末菲接纳了海森堡。他在面谈后看出这个新生才高志大、好高骛远,建议他先学会踏踏实实地解决一些实际问题,并让他去与早两年入校、同样聪明绝顶的泡利(Wolfgang Pauli)作伴。与勤奋、生活规律、喜欢户外活动的海森堡相反,泡利不爱运动,夜夜声色犬马早上睡懒觉。但两个年轻人还是立刻成为好朋友。

泡利那时正被导师抓差,替索末菲为一家百科全书撰写关于相对论的综述。那正是海森堡所渴求的大课题。泡利却嗤之以鼻。他告诉海森堡相对论自诞生后就已经是一个完整的体系,既没有发挥余地也没有实用价值,在学术上是一条死路。索末菲那时刚着手的原子模型千疮百孔,才是肥沃的学术土壤。海森堡听从了师兄的忠告。

索末菲正有点焦头烂额。他已经解释的塞曼效应有了新变化:有些光谱线的分裂不尽情理,出现超越他模型的所谓“反常塞曼效应”(名为“反常”只是因为当时的理论无法解释,自然现象本身没有正常、反常之分)。他猜想已有的三个量子数可能还不足以描述电子的轨道,需要再加上一个新的量子数,却一时也找不出头绪。

初生牛犊的海森堡仔细研究了索末菲收集、整理的光谱数据,很快发现一个窍门。如果那新加的第四个量子数不是整数,而是半整数(1/2,3/2,……),他就能凑出相当一部分光谱线的分裂,解释这个反常塞曼效应。

他这个举动让泡利和索末菲都大吃一惊,深感绝对不可接受。普朗克的量子概念精髓在于能量或其它物理量可以分为一份一份的量子,也就是可以一个一个地数。如果允许以半整数计数,那么肯定还会出现以四分之一、八分之一等等计数。此风一开,量子概念也许自身难保。

但海森堡有着与几年前玻尔一样的尚方宝剑:无论模型如何没有道理,他可以解释实际的谱线分裂。索末菲只能高抬贵手,批准了海森堡发表论文。他将论文转寄给爱因斯坦、玻尔等人时专门附信道歉,表示论文存在大问题,但结果似乎太过重要,他不得不同意发表。

玻尔在去哥廷根前读到了这篇论文,因而知道海森堡这个大名。

经过这番历练,年轻的海森堡深为困惑。物理——尤其是量子——的研究方式完全不是他中学时想象的那样逻辑清晰、井井有条,既有数学的严谨又蕴含哲学的智慧。恰恰相反,玻尔和索末菲的原子模型逻辑上根本无法自圆其说,只是结果能与实验证据相符。这样通过光谱窥探原子的奥秘似乎与盲人摸象无异。如何知道自己摸对了、摸全了,如何确定此乃真实的物理?

玻尔表示深有同感。他坦白地告诉海森堡他也一样地没有把握,只是也只能依赖自己的直觉,摸石头过河。他已经认识到从熟悉的经典物理世界到量子世界本身也是一个量子式的跃迁,没法在逻辑上按部就班、顺理成章地平滑过渡。他告诉海森堡那原子的微观世界也许压根就是不可理解、没法用人类语言表达的。他们所做的模型不过是在尽可能地描述原子世界那些可以被观察、被理解的小部分。

同样对哲学情有独钟的玻尔还挺神秘地解释,物理就如同诗人的言辞。诗人并不那么关心事实本身,而会更关注于为事实勾画出美妙的图像和意境,建立内在的联系。

虽然不尽理解,玻尔这番肺腑之言扭转了青年海森堡对物理学、科学研究的原初想象和成见,开启了他的职业生涯。(玻尔和海森堡的这番——以及后来多次——的对话内容只有海森堡多年后一面之词的回忆,可能存在有意或无意的不确。)

分手时,玻尔邀请海森堡毕业后找机会到他的哥本哈根研究所深造,一起尝试破解这些疑惑。


1922年11月13日,爱因斯坦乘坐的邮轮在赴日本途中在中国的上海短暂停留。他在那里受到当地知识、新闻界人士热烈欢迎,也接到他终于获得诺贝尔奖的电报。稍早,玻尔在哥本哈根也得到了他自己的喜讯。

爱因斯坦(右四)和艾尔莎(左三)在上海逗留期间在当地画家王一亭(右二)家中留影。右一为历史名人于右任。


那年,爱因斯坦的诺贝尔奖争议已经近似丑闻。法国的布里渊(Marcel Brillouin)在提名信中诘问:你们要好好想一想,如果50年后人们发现爱因斯坦不在获奖者之列会怎么反应?与他一起,包括普朗克、劳厄、索末菲、郎之万、瓦尔堡、奥森的17人为爱因斯坦提了名。

奥森那年加入了评委会。他刚从哥廷根的玻尔节回来,挺身而出要设法解开这个死结。一年前,奥森作为同事曾经辅助古尔斯特兰德研究相对论的现状,知道他很不靠谱,却极为固执。奥森决定避开相对论这个烫手山芋,改提光电效应。虽然爱因斯坦所依据的量子理论与相对论一样也还未被瑞典科学院成员接受,奥森强调爱因斯坦“发现”了光电效应背后的定律,那已经由密立根的实验证实。因此完全符合诺贝尔奖的标准。

这样,奥森提议将搁置的1921年奖补授给爱因斯坦,表彰他这一发现以及“他对理论物理的贡献”。为了避免误解,他还特意注明:那被表彰的贡献中没有包括未来也许会被证实的相对论和引力理论。(这个画蛇添足的注释似乎也为爱因斯坦将来以相对论再度得奖预留了机会。但评委会后来再也没有重启这一争端,相对论也就一直在诺贝尔奖中缺席。)

为了加强效果,奥森建议同时将1922年的奖授予玻尔,因为玻尔的原子模型是爱因斯坦光电效应理论的延伸。他成功地赢得了古尔斯特兰德和阿伦尼乌斯的首肯,两个奖项都顺利得以通过。

虽然两年的奖同时公布,玻尔很庆幸他的奖排在爱因斯坦之后,免了在他尊敬的师长之前捷足先登的尴尬。他更兴奋地期待能与爱因斯坦同台领奖共享殊荣,却只能抱憾。当玻尔12月10日在斯德哥尔摩发表获奖演说时,爱因斯坦还在地球另一端的日本讲学。德国和瑞士为爱因斯坦的国籍发生了争执。妥协之后,德国驻瑞典大使在仪式上代爱因斯坦领了奖,再由瑞士的大使之后转交给爱因斯坦。

1923年7月,从亚洲回来的爱因斯坦借瑞典的一次会议补做了获奖演讲。他压根没有提及光电效应,而是着重地介绍了相对论,并提出他下一步的宏大构想:寻找一个能兼顾广义相对论(引力)和电磁作用的“统一场论(unified field theory)”,并希望这样一个全面的理论能够解决量子概念中那些令他寝食不安的难题。

萊纳德没想到他反对相对论、犹太物理学的不懈努力会导致爱因斯坦最终以他所发现的光电效应得奖。至少在诺贝尔奖说明中,他们俩的名字永远地联系在一起。

虽然有点阴错阳差,爱因斯坦与玻尔继普朗克之后的联袂获奖奠定了量子在诺贝尔殿堂中的位置,也开启了诺贝尔奖接纳理论家的新时代。

在这场激烈争议的背后,玻尔的得奖一帆风顺。他从1917年起就开始被提名,呼声逐年增高。获奖的1922年,他有着11人的提名。获奖可以说是众望所归,毫无异议。

只是那丰富、扩展了玻尔原子模型的索末菲私下里非常纳闷他为什么没能与玻尔分享这个奖。在玻尔得奖之后,他一直在等待,期望还能得到来自斯德哥尔摩的青睐。从1917到他去世的1951年,索末菲总共会获得84次提名,在物理奖中首屈一指。然终其一生,他未能跻身这个荣誉行列。



(待续)