Showing posts with label 康德(Immanuel Kant). Show all posts
Showing posts with label 康德(Immanuel Kant). Show all posts

Tuesday, February 12, 2019

宇宙膨胀背后的故事(之四):察颜观色识星移

赫歇尔的儿子约翰·赫歇尔(John Herschel)在他的父亲和姑姑的影响下也成为一位出色的天文学家,是英国王家天文学会的创始人之一并几次担任会长。他子承父业,也热衷于埋头数天上的星星。在现实世界里,他对新发明的照相术发生了浓厚兴趣,精于照相底片的化学。后来流行的行话“负片”(negative)、“正片”(positive)等便是他的首创。

照相机的发明自然也引起了天文爱好者的躁动。在底片上留下星星的倩影成为19世纪中叶有钱有闲阶层的新挑战。这个刚问世、靠玻璃板上涂抹化学试剂摄影的新技术在捕捉微弱的星光上还真是勉为其难。在长达几小时的连续曝光过程中,硕大的望远镜需要平稳地转动,跟踪正在“斗转星移”的目标。摄影者同时还得像狙击手一样盯着目镜监视,时刻调整以确保目标锁定在十字线的中央。

1840年,美国人约翰·杜雷伯(John Draper)成功地拍摄了第一幅月亮照片。1850年,哈佛天文学家邦德(William Bond)拍出了织女星(Vega)——人类第一张太阳以外的恒星照片。到1860年代后期,玻璃底片完成了从湿版到干版的过渡,不再需要抢在试剂干燥之前完成摄影,曝光时间得以大大加长。1880年,约翰·杜雷伯的儿子亨利·杜雷伯(Henry Draper)拍出了第一张星云照片。


古人看星星,除了它们的位置(即所在的星座),只有很少几个特征可以互相比较:大小、亮度、颜色。在照相技术出现之前,这些都只是肉眼观察、记录的结果,带有很强的主观偏见。飘忽不定的地球大气层对星光的干扰也带来更多的不确定因素。

照片上的影像终于让天文学进入了精确、客观测量的新时代。严谨的天文学家在每幅照片上都会记录曝光时所用的望远镜、时间、角度、天气状况等因素,然后依据既定的公式计算、修正测量出的星星大小和亮度。

更大的突破却是来自颜色。

彩虹是常见的自然景象,曾引得无数文人骚客为之感慨抒怀、浪漫想象。彩虹不只是出现在雨后的斜阳照耀,而是在瀑布、水泡、玻璃折射下都能经常看到。早年物理学家——包括英国的虎克(Robert Hooke)——认为这是因为白光通过这些物体时被染上了颜色。

牛顿不满意这个解释。他在1666年进行了系统的科学实验证明并非如此。他的设计相当简单:在一个棱镜把太阳光分离成斑斓的彩虹后,他让分离出的红光光束再通过另一个棱镜,发现出来的依然只有红光——第二个棱镜没能将红光再染上别的颜色。然后,他又让第一个棱镜分离出的所有颜色的光再通过倒过来的第二个棱镜,发现那七彩的光又重新组合,恢复成了白光。这样,他指出颜色是光本身的属性。棱镜不具备染色的功能,只是在改变不同颜色的光的路径,因此可以分离、重组颜色。
牛顿为他的双棱镜实验手绘的设计草图,这里是演示分离出的红光不会再度被第二个棱镜“染色”。

牛顿相信光束是由微小、肉眼不可见的粒子(corpuscle)组成,这些微粒与其它物体一样遵从他发现的动力学定律。他推测光粒子通过棱镜表面时受到了一种力,因此改变了路径。他假设这个力对所有光粒子是一样的,路径扭曲程度便取决于粒子的质量。因此,他认定红光的微粒质量最大,光路被扭曲的程度最小;而紫光则反之。

当然,牛顿看到的分离出的太阳光与我们日常看到的彩虹一样,是一道从红到紫连续变化的亮色,并没有红光、紫光的界别。他把这个分离——“色散”(dispersion)——出来的连续颜色系列叫做“光谱”(spectrum)。参照乐谱中的音符,他大致地划分出七种颜色,相当于我们今天常说的“赤橙黄绿青蓝紫”。

虽然他的双棱镜实验令人信服地确立了颜色是光的属性,他的“微粒说”解释却很快被抛弃。相继观察到的光的衍射、干涉、偏振现象无法用粒子运动解释,因此微粒说被更早由虎克、惠更斯(Christiaan Huygens)等人提出的“波动说”取代。光束与声音、水面涟漪一样是一种波动,光的不同颜色来源于波动的不同频率:红光的频率最低,波长最大;紫光则频率最高,波长最小。


大约150年之后,德国一个玻璃坊工匠弗劳恩霍夫(Joseph von Fraunhofer)注意到他生产的棱镜产生的光谱中有一些细细、不易察觉的黑线。他精益求精地优化工艺,试图消除这些瑕疵。经过不懈的努力,他制作出当时最优质的玻璃,引领德国超越英国成为世界光学仪器中心。但光谱里的那些小细线却依然如故。

弗劳恩霍夫领悟到这不是玻璃的毛病,而也是来自光本身,因为那些黑线在光谱中的位置——也就是频率——非常固定。他把比较明显的一些黑线用字母顺序标识出来,最引人注目的是黄光区有两条相挨着的粗线:“D-双线”。后来他又把望远镜与棱镜结合起来,可以更清晰地观看太阳的光谱,赫然发现其中居然有成百上千条这样的黑线。由此,他发明了光谱仪(spectroscope)。
1987年德国邮政为纪念弗劳恩霍夫诞辰200周年发行的邮票,用的是他当年描绘的太阳光光谱。

弗劳恩霍夫从小是个孤儿,没有系统地接受过正规教育。但他不仅在玻璃工艺上做出了杰出贡献,还成为光学专家。除了光谱仪,他还根据光波的原理发明了“衍射光栅”(diffraction grating),能比棱镜更有效地分离、辨识光谱。遗憾的是,他39岁时就去世,至死没能明白那些黑线是什么。

30多年后,德国海德堡大学的物理学家基尔霍夫(Gustav Kirchhoff)和化学家本生(Robert Bunsen)合作才揭开了这个谜。

早在唐宋年代,中国人已经制作出烟花焰火,增添节日的喜庆。焰火的原理是一些矿物质在受热后会发出不同颜色的光。基尔霍夫和本生发现这些颜色来自矿物质中含有的化学元素。他们花了很大的工夫提纯,然后用本生发明的“本生灯”(Bunsen burner)逐个加热纯化的元素,用光谱仪观察它们炽热时发出的光。

这时他们看到的不是七彩的彩虹,而只是一条条细细的、明亮的线条。令人惊奇的是每种元素有着自己特定的谱线,犹如可辨认的指纹。尤其是金属钠,加热后有两道亮丽的黄色谱线,恰恰就在弗劳恩霍夫的“D-双线”的位置。

基尔霍夫意识到他们看到的亮线与弗劳恩霍夫发现的暗线其实是同一个现象的两面:前者是元素受热时发射的光,后者则是同一种元素从白光中吸收了同样频率的光后留下的“黑影”。因此,无论是看到亮线还是暗线,光谱仪都可以用来识别该元素。一个晚上,他们从实验室看到远处发生火灾,便好奇地将光谱仪对准那火光。果然,他们在光谱中找到钡、锶等元素的“指纹”,正是起火仓库里存有的货物。
基尔霍夫(左)与本生。

在那之后,众多的科学家便将太阳光谱中那些暗线与地球上观察到的元素“指纹”一一对比,很快辨认出太阳上有氢、氧、碳、钠、铁……等元素,与地球上的相应元素并无二致。当一道黄色谱线找不到对应元素时,他们大胆猜测那来自一个太阳上才有的新元素,以希腊文的“太阳”命名为“氦”。十几年后,氦才在地球上被发现,证实这个元素的存在。

于是,天文爱好者又兴致勃勃地把光谱仪连接到望远镜上,要一举探究恒星的构成。微弱的星光被棱镜色散之后就更难以捕捉。但有了用照相机长期曝光的技术之后,这只是一个耐心和技术的问题。

1863年,在30岁时突然变卖纺织家业而投入天文观测的英国人哈金斯(William Huggins)成功拍摄到第一张恒星的光谱照片。1872年,亨利·杜雷伯拍摄到织女星的吸收谱线。及至1880年代,即使是肉眼看起来模糊不清的星云,也在哈金斯、杜雷伯等人的玻璃底片留下了光谱“指纹”。

很快,哈金斯发现遥远恒星的光谱与太阳光谱大同小异,也就是它们的成分对我们来说都不陌生。他兴奋地宣布:“每个星星闪烁的地方,都有太阳系的化学。”(“The chemistry of the solar system prevailed, wherever a star twinkled.”)也许美中不足的是,他没能像氦那样在外太空发现新的未知元素。


1840年代初,奥地利的多普勒(Christian Doppler)也对星星看上去有不同的颜色很感兴趣。他觉得他明白个中缘由,因为他注意到波的频率并不是绝对的,而是会随着观察者与波源的相对速度改变。

1845年,荷兰气象学家巴洛特(Christophorus Buys Ballot)专门请了一个乐队站在行驶中的敞篷火车上吹号,他在站台上听到了“走调”:火车开过来时号声的音调偏高,离去时则偏低,因此证实了这个“多普勒效应”。如果我们注意倾听行驶中的火车拉响的汽笛,或警车的警笛,也能注意到同样的现象。

多普勒认为光作为与声波类似的一种波,也会有同样的效应。他觉得星星应该是都在发同样的白光,不过有些星可能在运动中。如果它们冲着我们过来,光的频率会像号音走调一样移向高频,看起来就会偏蓝。反之,如果星星离我们远去,它就会显得偏红。

可惜的是他忽略了一个细节:星星的光谱与太阳一样是彩虹般的连续谱,其中频率无论是往高(“蓝移”)还是往低(“红移”)移动,整体的色彩不会有多大变化——如果黄光因为红移变成了橙光,原来的绿光就会同时变成黄光补上。

还是基尔霍夫为星星的色调提供了更合理的解释。他发现,只有本生灯烧出来的炽热稀薄气体才会出现分离的谱线。固体、液体甚至密度高的气体加热后发出的都是连续光谱。在不同温度下,光谱会略有不同。温度低时,红色比较显著,温度高时,蓝色、紫色则更醒目。

自古以来,打铁、烧窑等需要高温的工匠都掌握着一手绝活:看火色——看看火中的颜色就能判断出火候,亦即温度。这招之所以好用,基尔霍夫发现是因为“火色”与火焰中的物质无关而完全由温度决定。他把这种热辐射叫做“黑体辐射”(black-body radiation)。

太阳也是这样一个发光的物体。他根据其光谱判断太阳其实是一个温度达几千摄氏度的大火球。同样,我们观察到遥远的恒星呈现出偏红、偏黄、偏蓝的色彩也是因为它们有着不同的表面温度。


其实多普勒最初的想法也并不完全离谱。虽然从连续的光谱的确看不出运动导致的频移,光谱中的那些细细的谱线(“指纹”)却每根都有着确定的频率位置。因为已经可以确信恒星、太阳都是由与地球上相同的元素组成,我们可以比较同一元素的谱线的频率位置,看看来自恒星的谱线是不是带有多普勒效应带来的红移或蓝移。

哈金斯是第一个发现这样的频移的。

自从罗斯伯爵发现涡旋状的星云、康德提出银河是一个旋转中的大盘子后,恒星位置不恒定,而可能是在运动中这一猜想已经不再骇人听闻。现在,光谱线的多普勒效应不仅能让我们确定它们在运动,还能很简单、精确地计算出它们相对我们运动的速度。(这里所说的运动、速度都是“径向”的,也就是星星沿着我们和它的视线上的运动、速度。有些星星也有“横向”的运动,天文学上叫做“自行”(proper motion)。那种运动没有多普勒效应,只能通过相对于其它恒星背景的视差判断。)

巴洛特很容易就听出了火车上号音的变调。但如果他同时在火车上装置某种颜色的灯来观察光的频移,这个实验却会失败。因为多普勒效应中的频移大小取决于火车速度与波速之比。与光速相比,火车的速度微不足道,不可能观察到多普勒效应。

但哈金斯能看到星星光谱中的多普勒效应,说明星星不仅在运动,而且速度很大,能与光速相比而不可忽略。的确,他估算出御夫星(Capella)的速度达每秒30公里,也就是光速的万分之一。(严格来说,如此高速运动的多普勒效应需要做狭义相对论修正,但爱因斯坦还要再等11年后才出生。)

看看漫天的繁星,想象一下它们正在以非常高的速度“疯狂”地奔波着。我们这个宇宙这是怎么啦?

随着越来越多数据的积累,天文学家很快意识到只有很少的星星或星云——比如那个让马里乌斯纳闷的仙女星云——在朝着我们奔来。绝大多数的星星、星云却似乎都在“义无反顾”地背离我们而去:它们的谱线全都呈现出不同程度的红移。

这就十分地诡异了。


(待续)



Tuesday, January 29, 2019

宇宙膨胀背后的故事(之三):坐井观天看银河

开普勒和牛顿从根本上颠覆了亚里士多德、托勒密以地球为中心的宇宙模型,重新构建了太阳系。太阳和月亮并不是行星,前者是不动的恒星,后者只是地球的一个卫星(也是唯一真的绕地球转的天体)。地球则成了行星之一,与原来已经认定的金木水火土五大行星一样在绕太阳的椭圆轨道上运行。

正如伽利略那不服气的嘟囔:地球在动。她不仅绕着太阳公转,而且还以24小时为周期自转,这样就很简单地解释了人类观察到的满天繁星步调一致的斗转星移。于是,亚里士多德精心设计的那个最外层、镶嵌着所有恒星的转动着的大轮子也就失去了意义:恒星是恒定不动的,是地球在动。

只是,皮之不存,毛将焉附?没有了那个天球做依托,漫天的恒星如何在太空漂浮、分布?牛顿力学只能计算太阳系内诸星体的运动。外面的星星离得太远,几乎完全没有引力的关联。唯一的联系是我们能被动地接收到它们传来的光,也就是看星星。要认识这个宇宙,人类依然只能依靠最原始的手段:观察、思考。

首先会想到的就是,夜空中为什么会有一条明亮的星河?


在希腊神话故事里,众神之王宙斯(Zeus)偷偷让他的私生子、后来的大力神赫拉克勒斯(Heracles)吸食他妻子、女神赫拉(Hera)的奶。赫拉惊醒后把孩子推开,致使乳汁喷洒而出,化为中国人称作银河的“奶路”。(这个故事有着几个不同的版本。)
16世纪意大利画家Tintoretto根据希腊神话创作的油画《银河的起源》(The Origin of the Milky Way)。
现实地看,银河是一条横贯夜空的窄带,在伽利略的望远镜里呈现出很多很多的星星。这条河流似乎在两头的地平线还继续延伸下去,环绕着地球。

1750年,英国的赖特(Thomas Wright)出版了《宇宙的原始理论或新假设》(Original Theory or New Hypothesis of the Universe),做出一个“新假设”。

他把托勒密的模型整个脱胎换骨:宇宙就是一个相对来说很薄的球壳,所有星星包括太阳系都挤在这个球壳之中。因为球壳半径非常大,太阳系所在的局部差不多就是直直的扁平盒子。地球随着太阳系在盒子中间。如果顺着球壳的方向看,那里会有密密麻麻的群星,便是我们所见的银河;如果转往其它方向,能看到的星星便会稀落得多。
赖特绘制的“球壳宇宙”模型。左图是全景,所有星星都在一个球壳里,球心是“上帝之眼”。右图是太阳系附近的球壳放大示意图。地球处于这一段的中心,顺着球壳方向看到的星星密集,便是银河。

赖特当然不可能想到160年后会有一个名叫爱因斯坦的人出来说宇宙是“有限无边”,但他的模型几乎就是爱因斯坦用来做类比的那个二维世界:如果能顺着球壳在星星中穿梭,就会发现一个有限无边的宇宙。

这个模型还让赖特为上帝找到一个比亚里士多德所设计的更好的家:球壳宇宙之外的球心点。上帝已经不再需要通过大轮子推动这个世界运转,他只需占据中心位置,通过那里的“上帝之眼”(Eye of Providence)督查、掌控整个宇宙的命运。

赖特的理论传到欧洲大陆时已经走样,但引起了一个刚刚30出头的德国青年的注意。康德(Immanuel Kant)那时候正在研习牛顿理论和物理世界。他在1755年出版了一本题为《自然通史和天体理论》(Universal Natural History and Theory of the Heavens)的小册子阐述自己的宇宙观。他认为赖特将神学与物理学结合到一起纯粹是画蛇添足:宇宙的结构应该可以完全遵循牛顿力学,不需要上帝的存在。

他也没觉得需要那么个有限无边的球壳。

受赖特模型的启发,康德心目中的银河就是一个延长了无数倍的太阳系:一个里面装着很多星星的大铁饼式的圆盘。就像众行星在同一平面上绕着太阳转一样,这个圆盘也在旋转。与赖特相似,他设想这个盘子面积非常大,但只有一定厚度。我们的太阳系在盘子中心,因此我们看到的夜空有着一道明亮的银河,那就是盘子的边缘方向。


赖特和康德只是在大胆假设,天文学家却需要小心求证。

在伽利略之后,越来越强大的天文望远镜一代又一代地出现。天文学家已经不再是肉眼看星星。与赖特同时代的英国天文学家赫歇尔(William Herschel)拥有着当时最大的望远镜,而且还都是他自己亲手制作的。

赫歇尔出生于德国的一个音乐世家,自己原本也是音乐家。他在34岁时读到一本天文教材后一下子走火入魔,随即荒废了音乐,全身心投入打磨望远镜镜片和夜晚看星星之中。工作起来,他甚至连吃饭时间都不愿意耽误,边干活边让妹妹给他喂食物。(他妹妹卡罗琳·赫歇尔(Carlone Hershel)后来终身未嫁,全心全意为哥哥担任助手,自己也颇有成就。)

功夫不负有心人,赫歇尔几年后在1781年用自制的望远镜发现了天王星,声名大噪,也为自己赢得一份国王亲赐的终身俸禄,可以专心磨制更大的望远镜,看更多的星星。

为了看清宇宙的形状,赫歇尔采取了最质朴的笨方法:数星星。夜复一夜,他把望远镜指向天空的某一个方位,兢兢业业地数着那里能看到的星星、记录它们的亮度。当他把所有的角度都数完后,他得到人类有史以来第一个依据观测数据统计而成的模型:她的确像是康德所说的那样一个扁扁的大盘子,只是不圆,而是不规则形状。
赫歇尔在1785年绘制的银河系形状,其中心那个黑点是太阳系位置。

对赖特、康德、赫歇尔来说,他们研究的既是银河模型也是宇宙模型。二者没有区别,都是太阳系外面的那个世界。今天我们有一个天文术语叫做“星系”(galaxy),这个词来自希腊文的“奶”,与“奶路”源于同一个故事。所以,宇宙、银河、星系那时候都是同义词。

可也正好就是在那个年代,人们开始意识到这三个词可以有不同的含义。


几乎与伽利略同时,曾经在帕多瓦大学与他共事过的德国人马里乌斯(Simon Marius)也在用望远镜观看星空,而且比伽利略更早发现了木星的卫星。伽利略指责马里乌斯剽窃,是科学史上一桩公案。今天,木星那四颗最大的卫星还被统称为“伽利略卫星”,却沿用着马里乌斯依照希腊神话为它们各自起的名字。

他们都发现有些肉眼看上去的单独一颗星在望远镜中其实是由很多密集的小星星构成。但马里乌斯更注意到也还有一个神秘的亮点即使在他的望远镜里也还看不出来其中是什么。

早在公元10世纪,当欧洲依然处于“黑暗的”中世纪时,波斯天文学家苏菲(Abd al-Rahman al-Sufi)对托勒密收集的恒星列表做修正补充,出版了《恒星之书》(Book of Fixed Stars)。他指出在仙女星座(andromeda)中有一个“云一般的点”(cloudlike spot),不像是一颗星,却也不知是什么。马里乌斯就是用他的望远镜看那里,发现还是只能看到一小片模糊的亮光,像是一个燃烧着的蜡烛火苗。

后来因为天文望远镜越来越强大,很多原来看不清楚的星点逐渐能够看出其中的星星,但仙女星座这个“云点”依然模糊如故。为了区分,天文学将能够看出由星星组成的亮点叫做“星团”(star cluster),而那些依然宛如云彩或雾霾的不明物体就被叫做“星云”(nebula)。自然,这神秘莫测的星云立刻就成为大家力图探究的对象。

1781年,法国的梅西耶(Charles Messier)整理出一份列表,上面有已知的100多个星云。他所用的排序一直沿用至今。仙女星云被列为31号,因此被称为“M31”。

赫歇尔使用他世界领先的望远镜,很快就把发现的星云的数目增加到2000多。不仅如此,他还看到星云有着各种各样的形状:有的圆圆,有的扁扁,还有的像彗星拖着尾巴。当他发现一个星云而仔细观察时,往往还会在它附近发现一些原来没注意到的暗淡星云。

虽然还不知道星云究竟是啥,这个发现一度让欧洲的天文学家长松一口气。

圣经《创世纪》开篇叙述道:“上帝说要有光,于是就有了光。……这是第一日。”接下来,一直到第四日,上帝才想起来要创造出太阳以及其它“天上的光体”。

那么,在太阳被创造出来之前,光是哪里来的呢?这个逻辑问题一直困扰着神学界。天文学家发现的这些不是星体却发着光的星云,也许正是上帝造太阳之前所造的光。他们终于可以理直气壮地回应无神论者的这一挑战了。

康德在写他的小册子时已经知道了星云的存在。他正是受其启迪而修改了赖特的宇宙模型,指出银河是一个圆圆扁扁的盘子。不仅如此,他认为银河并不是单一的宇宙。那些星云每一个都是一个与银河类似的宇宙,也与银河一样是扁扁平平的圆盘。它们距离我们非常遥远,故而看上去渺小、昏暗。而因为与我们相对的角度各有不同,它们便呈现出不同的椭圆形状。

康德、赫歇尔的宇宙——或者说银河——不仅有限,而且有边界。赫歇尔还通过自己的测量第一次估算了银河的大小。只是他们的模型说星星在太阳系周围有远有近,我们却无法分辨它们的距离。因为它们都太远,在地球上观察不到视差。

令赫歇尔最为耿耿于怀的是他无法确定那些星云的远近,只能根据看到的形状猜想。当他看到星云那些不同的形状时,他像康德一样认定那是银河外的“天外之天”。但他后来找到一个中间有一颗明亮星星的星云(现在知道那其实是一颗临死的恒星在往外抛射物质)时又立刻改变了主意,认为星云不过是银河内的某种发光气体。这样的气体在万有引力作用下可以逐渐凝聚成如同太阳系这样的结构,也许这正是我们太阳系的来源。


赫歇尔在1822年去世后,他保持的最大望远镜记录很快被更有魄力的下一代年轻人超越。爱尔兰贵族罗斯伯爵(William Parsons, 3rd Earl of Rosse)也是在34岁时突然半路出家,舍弃作为英国议会议员的从政而义无反顾地投入到这个有钱有闲人的新游戏中。1845年,他成功建造一个被称之为怪兽“利维坦”(Leviathan)的庞然大物。这个望远镜口径达1.8米,可以让当地名流戴着高帽子、撑着伞从容地穿过镜筒而助兴。他的目的只有一个:要看到赫歇尔没看到的星云中间的星星——他不相信星云只是银河中的气体。

他没有成功。在他高倍放大的望远镜里,他依然看到星云是一片的光芒。但他看到一个更加惊人的景象:有些星云的形状极其诡异,犹如在急剧转动中的涡旋。
编号“M51”的螺旋星系。左图为罗斯伯爵在1845年根据观测手绘的图,右图为2005年美国航天局用哈勃望远镜拍摄的照片。

罗斯伯爵很小心地描画出他在目镜中看到的图像,在英国王家天文学会做了学术报告。他自己说这实在奇异,这样的星云不可能是静止的,内部一定是在运动中。的确,他的发现是如此地匪夷所思,大多数同行觉得难以置信。因为只有罗斯伯爵拥有这样威力的望远镜,其他人无法独立验证,只能望天兴叹。他们怀疑那是罗斯脑子发昏引起的幻觉,或者他的望远镜存在太大的成像扭曲。

相信他的人则觉得这个发现为康德的主张提供了更扎实的根据:这些星云正是像银河一样是一个个在旋转中的大盘子——也许不是康德的圆盘而更像赫歇尔所画出的银河。他们发明了一个新词叫“岛屿宇宙”(island universes):太空中的星云就如同一个个小岛,每个岛都是自己的一个宇宙。


康德没有再涉足科学研究,而是成了著名的哲学家。当他30多年后写下后来成为他墓志铭的名句(“有两种东西,我们对它们的思考越是深沉和持久,它们所唤起的那种惊奇和敬畏就会越来越大地充溢我们的心灵。这就是繁星密布的苍穹和我心中的道德律。”)时,他自己可能已经忘了当初对“繁星密布的苍穹”曾经有过的猜想。

他所处的年代也正是现代科学终于与哲学、神学相揖而别的时刻。随着天文观测越来越精细,物理学发展越来越成熟,哲学家、神学家即使是在宇宙的大命题上的发言空间也越来越小,直至近乎消失。从赫歇尔之后,没有人还会在宇宙模型中再想着为上帝留下一隅之地。

罗斯伯爵在1867年去世。也就是在那19世纪中叶,天文观测又迎来了两个新的技术突破。天文学家因之可以确切地知道恒星、星云并不是真的恒定不动,而是在运动着的。不仅如此,他们居然还可以非常精确地测量出它们运动的速度。



(待续)