Tuesday, August 20, 2019

宇宙膨胀背后的故事(十六):于最细微处见浩瀚宇宙

1977年,温伯格在美国出版了一本面向大众的科普书《最初三分钟》(The First Three Minutes),主要介绍宇宙在大爆炸后随即发生的一系列场景。这个引人入胜的标题——书中内容其实并不仅限于那“三分钟”——和新奇、详实的科学内涵吸引了大量读者,成为影响广泛的畅销书。

温伯格所著《最初三分钟》封面设计。

宇宙微波背景的发现又过去了12年。大爆炸这个奇葩的想法不仅在科学界得到广泛认可,成为作为该书副标题的“宇宙起源的现代观点”(A Modern View of the Origin of the Universe),而且也不再是一个简单抽象的猜想,已经发展为坚实的物理理论,并能够在现实世界中得到验证。

作为“外行”的彭齐亚斯和威尔逊发表他们的微波测量结果时,还曾小心翼翼地避免解释他们数据的含义,把这个不讨好的任务交给同时发表诠释性论文的狄克小组。狄克他们也没有提“大爆炸”,而是采用了普林斯顿同事惠勒(John Wheeler)提议的“原始火球”(primordial fireball)的说法。还是《纽约时报》报道时直截了当,大标题为:“信号暗示一个‘大爆炸’宇宙”。(“Signals Imply a ‘Big Bang’ Universe”)。一年后,皮布尔斯开始采用“大爆炸”这个字眼,意味着他们也终于“归顺”了伽莫夫、阿尔弗的宇宙起源理论。

在类星体上遭受重创的稳定态模型本已在苟延残喘,霍伊尔还是竭尽全力负隅顽抗。直到2000年,他(去世前一年)还出版了一本专著维护稳定态宇宙,批驳天文学界随大流接受大爆炸理论的行径。但他已经沦为孤独的绝响:即使是他的老朋友古尔德、邦德都已经接受了大爆炸学说。(1983年,霍伊尔的合作者、美国天文学家福勒(William Fowler)因发现恒星内部产生重元素的过程获得诺贝尔奖。包括福勒自己在内的很多人认为霍伊尔更应该得这个奖,因为该项工作实属霍伊尔首创。对霍伊尔未能获奖的原因有诸多猜测,是诺贝尔奖争议案例之一。)

微波背景辐射的发现是稳定态模型破产、大爆炸理论胜出的决定性事件。数学家埃尔德什(Paul Erdos)曾感叹:上帝犯了两个错误:一是他用大爆炸的方式创造了宇宙;二是他还留下了微波辐射的证据。


温伯格既不是天文学家也不是宇宙学家,而是一个研究基本粒子的理论物理学家。他探索的对象因此是物理学中最微观的世界。由他来描述、解释最宏观的宇宙似乎有点风马牛不相及。然而,这也正是1970年代物理学所特有的一道亮丽风景。

因为,在那最初的“三分钟”里,宇宙其实就是一个基本粒子实验室,高能物理学家的乐园。

伽莫夫年仅24岁时用量子力学的隧道效应解释原子核衰变,随后又推算把粒子加速到一定的动能,就可以突破原子核的壁垒。为此,他协助考克饶夫和沃尔顿发明了第一个粒子加速器。从那个加速器犹如健身房器械的管子里出来的质子成功地打开了锂、铍等原子核。

在我们这个适合人类生存的世界里,实验室里产生的粒子不具备太高的速度,因此需要加速才能击碎原子核。如果换一个环境,比如太阳等恒星的内部,因为温度、压力非常高,那里的粒子本身便带有非常大的动能,不需要人为加速就可以持续核反应。加速器便可以在人类世界中模拟恒星内部的环境。

如果把膨胀、冷却的宇宙回溯到最初,那会是一个即使太阳中心也相形见绌的最极端世界,其中的粒子会具备极高的能量。原子核——或任何有内部结构的粒子——都会在不断的碰撞中解体,回归为最原始的“基本粒子”。于是,伽莫夫按照他当时的认识设想最初的“伊伦”只能由中子组成。

考克饶夫和沃尔顿的在剑桥修建的加速器把质子加速到了具备几万“电子伏”的动能(电子伏是一个高能物理常用的能量单位,是一个电子在一个伏特的电压中加速所获得的动能。)。从动能来看,这些质子相当于来自一个温度高达10亿度的世界,远高于太阳的中心,大体相当于大爆炸之后200秒时的宇宙。

1930年代考克饶夫和沃尔顿设计的粒子加速器。

当爱丁顿绘声绘色地描述他如何在想象中将宇宙的演化“倒带”回放到时间的起点时,他没有想到就在他眼皮底下的几个年轻人所鼓捣着的简陋家伙便在实现这个操作,并且已经接近了宇宙爆炸后的“最初三分钟”。

考克饶夫和沃尔顿的设计很快被美国的劳伦斯(Ernest Lawrence)发明的“回旋加速器”(cyclotron)超越。劳伦斯因此在1939年——比考克饶夫和沃尔顿还早12年——获得诺贝尔奖。回旋加速器具备不需要太大的场地、能源便能够持续加速粒子的优势,在其后几十年中有了飞速的发展。美国布鲁克海文国家实验室在1950年代的回旋加速器就已经可以把粒子加速到30亿电子伏的高能。那相当于是大爆炸之后0.000000003秒、温度为35万亿度的宇宙。

1950年代美国布鲁克海文国家实验室的回旋加速器(Cosmotron)。

越来越大、能量越来越高的加速器揭示出一个崭新、神秘而丰富多彩的微观世界。五花八门的粒子在不同的能量档次上出现、分解,表现出不同的碰撞、反应机理。这些在最小尺度上的知识、数据的积累正好为大尺度的早期宇宙提供了实在的线索:在某个时期的宇宙中翻天覆地的就应该是某个相应能量的加速器中所看到的粒子和它们的反应过程。

1968年,也就是伽莫夫逝世的那一年,斯坦福大学的直线加速器用高能的电子轰击氢原子核,证实质子并不是原来想象的基本粒子,而是由更基本的“夸克”(quark)组成。中子亦然,因此不可能是能存在于“伊伦”中的原始粒子。

1970年代,包括华裔物理学家丁肇中(Samuel Ting)在内的众多高能物理学家利用大型加速器一层层地揭开了微观世界的奥秘,逐渐形成基本粒子的“标准模型”(Standard Model)。正是在这个模型的基础上,温伯格得以“越界”总结、描述宇宙的早期膨胀、演化过程。


勒梅特曾经把他的宇宙蛋所在的时间叫做“没有昨天的那一天”(The Day without Yesterday)。在那一刻,爱丁顿的录像带已经倒到了头,不再有更早的过去。我们不知道——也不可能知道——那时的宇宙确切会是什么样子。因为广义相对论在那一刻出现了数学上的“奇点”(singularity),不再具有物理意义。最多,我们只能泛泛地描述宇宙那时没有空间尺寸,处于时间的零点,而温度、压力、密度都是无穷大。

“原始火球”爆炸后,一个有真实物理意义的世界才开始展开。温伯格在他的书中将爱丁顿倒好的录像带一幕一幕地重放:

大爆炸发生0.01秒后,宇宙的温度高达一千亿度。在那样的“炼狱”中,基本上只存在没有或几乎没有质量的光子、中微子、电子以及它们相应的“反粒子”:反中微子和正电子。这时候的宇宙是一个和睦相处的大家庭,所有粒子胶合成一团,不分彼此,处于完全的热平衡状态。也有极少量(十亿分之一)的质子和中子混在其中,它们不停地被众多的轻子轰击而来回互变,中子甚至没机会自己衰变成质子。

0.12秒时,宇宙的温度随着膨胀冷却到约三百亿度。那些可怜的极少数质子、中子被轰击的程度稍微缓和,部分中子得以衰变成质子。原来数目相同的质子、中子数开始出现差异。质子占62%而中子只有38%。

1.1秒时,温度冷却到一百亿度。和睦的大家庭第一次出现分裂:不爱与他人掺和的中微子退了群(decouple)。这些中微子自顾自地弥漫于宇宙空间,不再与其它粒子交往,形成所谓的“宇宙中微子背景”(cosmic neutrino background),延续至今。(遗憾的是,这一背景的存在还只是理论预测。因为中微子几乎完全不与其它物质发生反应,异乎寻常地难以探测。宇宙中微子背景的能量非常低,更是难上加难,至今依然无法找到这个可以验证大爆炸理论的证据。)

13.83秒时,温度冷却到三十亿度。宇宙中的电子和正电子开始大规模互相碰撞而湮灭,转化为光子。也是在这个时候,伽莫夫描述的“中子俘获”的元素制造过程才得以开始,宇宙中第一次出现氢、氦原子核以及它们的几种同位素。

3分零2秒后,温度冷却到十亿度。电子和正电子湮灭后基本消失,宇宙这时充满了光子和中微子,以及越来越多的氢、氦同位素。因为不再有电子、正电子的持续轰击,还未被“俘获”的自由中子也得以大规模衰变成质子。宇宙中质子、中子的比例出现显著差异:86%的质子对14%的中子。在那之后,所有的中子都被俘获、“封闭”在氢、氦原子核中(原子核内的中子寿命非常长,基本上不会自己衰变)。


温伯格的书名叫做《最初三分钟》。这除了吸引读者眼球外,也因为他觉得宇宙的最初三分钟是最精彩的。那之后宇宙只是惯性地膨胀、冷却,“再没什么有意思的事情发生了”。这个说法也许是出于他对基本粒子物理的情有独钟,但未免夸张。

在最初的狂热过去后,宇宙依然持续地膨胀、冷却着。大爆炸之后五万年左右,宇宙中有质量的粒子开始超越光子、中微子等成为主体力量,引力也开始发挥作用。几十万年之后,宇宙终于冷却到“只有”几千度的“低温”。这时带正电的氢、氦等原子核才能够与带负电的电子持久性的结合,形成稳定、中性的原子。一直与这些带电粒子纠缠不清的光子终于也得以脱身,与那些远古的中微子一样退了群,成为另一道与世无争的宇宙背景。随着宇宙持续的膨胀,这些光子的频率不断地红移,最终会在微波频段被彭齐亚斯和威尔逊意外地发现。

但在地球和地球上的贝尔实验室出现之前,这些光子的频率会先红移到红外线波段。那时整个宇宙不再有可见光,进入所谓“黑暗时代”(Cosmic Dark Age)。(当然,可见光、黑暗这些概念都是以地球人类为主体的描述,而那时候还远远没有人类。)

黑暗时代一直持续到大爆炸二亿年后。这时氢原子在引力作用下形成第一代恒星,内部因压力点燃核聚变而发光、发热。宇宙才再度出现光明。在那之后的几亿年里,宇宙继续膨胀、冷却,恒星聚集成为类星体、星系、超星系等等。恒星内部的核聚变逐级发生后制造出碳、氧、硅、铁等较重的元素,然后在恒星“死亡”之前的超新星爆发中将这些元素抛洒出来。某些恒星坍缩成密度巨大的中子星。它们的碰撞、合并又能制造出铅、金、铂等重金属。

在大爆炸之后大约92亿年,宇宙的某个角落中出现了太阳系。最先出现的是作为恒星的太阳,随后是木星、土星、天王星和海王星,然后才有水星、金星、地球和火星。又过去40多亿年后,地球上出现了人类。他们抬头仰望、低头沉思,从浪漫的想象和原始的敬畏到智慧的认识和逻辑的推理,经过几百年的努力,逐渐发现了宇宙的膨胀、理清了宇宙的来源和头绪。


温伯格等物理学家所描述的这个图景是一个精确、定量的物理过程。它不仅能预测微波背景辐射,而且还能非常准确地解释今天宇宙中各种元素的由来和比例。另一位也以热心科普著名的物理学家克劳斯(Lawrence Krauss)的裤兜里永远地放着这么一张数据卡片。当他遇到对宇宙来源于大爆炸表示怀疑的人时,便会骄傲地拿出卡片引证,说明大爆炸不是空想臆测,而是一个已经被证实的理论。

然而,也正是在1970年代末,当基本粒子和宇宙起源在物理学中趋近辉煌的顶峰时,一丝不苟的物理学家发现他们的大爆炸理论依然有着显著的缺陷,无法解释宇宙膨胀过程中的几个奇诡、顽固的谜点。


(待续)

Monday, July 29, 2019

宇宙膨胀背后的故事(十五):宇宙大爆炸的余波

也是在1948年,刚刚从美国海军退伍的马里兰大学年轻教师韦伯(Joseph Weber)找到伽莫夫,自我介绍是微波技术专家,询问是否有合适的课题让他研修一个物理博士学位。伽莫夫不假思索地回答,“没有。”韦伯不得已,后来辗转进入了探测引力波领域(详见《捕捉引力波背后的故事》第三章)。

伽莫夫大概自己都不知道,他那两个弟子阿尔弗、赫尔曼在推算出大爆炸之后的宇宙在今天应该有绝对温度5度左右的背景温度后,那时正在四处寻找微波专家,咨询观测这个大爆炸遗迹的可能性。


二战之后像韦伯那样的无线电——微波是无线电频谱中的一部分——专家其实相当多,有些还是颇为资深的物理学家。战争期间,物理学家在原子弹之外最突出的贡献大概就是在雷达、通信技术上。战后,这些人才回到大学实验室,以各种方式用他们在战争中开发或学会的技术开拓科学研究的疆界。

1950年代初,英国、澳大利亚天文学家注意到他们的无线电天线可以接收到一些来自天外的电波。古尔德和霍伊尔率先意识到这些电波来自银河之外,可能非常遥远。因为用光学天文望远镜看不到发射这些电波的源头,不知道是不是来自恒星、星系,便暂时把它们的来源叫做“类星体”(quasar。这个词是华裔物理学家丘宏义(Hong-Yee Chiu)生造出来的。)

一个类星体的艺术想象图。

后来,帕洛玛山上的桑德奇等人费了九牛二虎之力才在1963年用海尔望远镜看到一个与类星体吻合的光源,并拍摄到光谱。果然,这个光谱红移得更夸张,显示光源速度达每秒四万七千公里。这时已经无法继续用已有的“宇宙距离阶梯”测定其距离,只能通过哈勃定律由速度倒推其距离大约在几亿光年之外,比胡马森看到过的最远星系又远了好多倍。

无线电与可见光一样是电磁波,只是处于不同的频率波段。可见光在宇宙空间旅行时会遭到各种星系、尘埃等的吸收和散射,有相当的损失(这也是哈勃等人根据光强估算距离的主要误差来源)。而无线电信号则不然,它们在宇宙中几乎畅行无阻。因此,即使是来自非常遥远的无线电,也能在地球上接收到。由此诞生了“射电天文学”。

类星体的发现给霍伊尔等人的“稳定态”宇宙带来的一个难题。他们理论的精髓就在于“稳定”:宇宙恒定,不像大爆炸理论那样有个起点,并随之演变。

我们在观察星空、宇宙时,距离的远近同时也就是时间的先后。因为光传播的速度虽然很快,达每秒30万公里,却也不是无限。远处的光(或无线电信号)传到我们这里需要一定的时间。来自几亿光年之外的信号便是经过了几亿年的时间才抵达。也就是说,我们今天看到的类星体,实际上已经是几亿年前的存在。

那些几亿年前的类星体却与我们附近、更“现代”的星系有着明显的不同:类星体在发射着强烈的无线电波,而相应的可见光却微弱;我们已经熟悉的星云、星系恰恰相反。这不符合稳定态模型中宇宙时时、处处一样的描述。更让霍伊尔他们头疼的是,随后的跟踪观测还发现,类星体数目的分布也随距离而变化:越远的地方,类星体越多,密度越高。

大爆炸理论在这里却得心应手。大爆炸之后的宇宙是随时间不断地演化的。几亿、几十亿年前的宇宙与今天的宇宙大相径庭。那时宇宙的温度高,尚未形成今天常见的星系、恒星。类星体大概就是大星系诞生之前或之初的躁动,大量的基本粒子在巨大的黑洞周围高速运动、碰撞,发出强烈的无线电波。因为恒星还没有大量地形成,可见光便相对地微弱。

越远的类星体密度越高更是大爆炸的自然结果:膨胀中的宇宙越早期密度越高,膨胀后密度减低——也就是说膨胀之后“拉开”的空间里并没有像霍伊尔想象的那样出现新的物质填充。

类星体的发现,不仅又一次扩大了人类认知宇宙的视野,再次揭示天外有天,也让大爆炸理论在与稳定态模型的僵持中第一次占了上风。不久,更强劲的证据出现了。


二战之后,普林斯顿大学的狄克(Robert Dicke)教授对广义相对论、宇宙学发生了浓厚的兴趣。每星期总有一天,他和他的学生们会海阔天空地讨论这方面的课题,直到入夜才一起到镇上的小店去喝酒吃披萨。他对大爆炸和稳定态理论都不满意,因为这两个理论中宇宙的物质都属于“无中生有”。他更倾向于弗里德曼描述的“振荡宇宙”:宇宙是不停地在膨胀、坍缩,如此周期往复。这样宇宙中的物质总是存在着,只是密度在变化。

1960年代中期,霍伊尔和同行合作解决了伽莫夫等人没能解决的难题:宇宙初始的基本粒子通过中子俘获过程只能产生最简单的几个原子,到锂原子以上便出现了“断链”,无法持续。霍伊尔等人发展出一套在恒星内部高温、高压条件下产生更重的原子的反应链,解开了宇宙万物来源之谜。但也因此,稍重的原子必须在宇宙膨胀后期、恒星已经大量出现以后才能面世。

狄克因此想到,如果宇宙在来回振荡,这些后期才有的原子在宇宙的坍缩过程中也必须消失,才能在下一轮膨胀中重新产生。而它们之所以消失,只能是因为坍缩的宇宙进入超高温状态,以至于所有原子都被剥裂,还原为质子、中子等基本粒子。

狄克觉得这样一来宇宙的温度是可以推算的。他指导学生皮布尔斯(Jim Peebles)做一下理论计算。皮布尔斯很快得出结论:宇宙从最初的高温膨胀、冷却至今,现在的温度应该在绝对温度10度左右。

那是1964年,阿尔弗和赫尔曼的宇宙温度约为5度的论文已经发表了16年。狄克似乎对他们的工作完全不知情或者完全忘却了。他的振荡宇宙的坍缩过程其实就是爱丁顿、伽莫夫所想象的时间逆转的宇宙“倒带”过程。作为理论模型,二者其实没有区别。

皮布尔斯写好论文投稿后被匿名的审稿人打回,指出他们不应该地忽略了阿尔弗、赫尔曼等人的工作。皮布尔斯按要求修改后依然没能过关。但狄克并不太在意。他已经开始了下一个行动。

与伽莫夫那几个人不同的是,狄克自己就是实打实的微波技术行家。他在1946年发明了一个“狄克辐射计”(Dicke radiometer),是微波天线最常用的接收器。他也是一个实验好手。就在他琢磨宇宙的同时,他还用现代化手段重复了传说中的伽利略比萨斜塔实验,以超高精度证明物体在引力场中的运动与质量无关。

这时他带着另外两个学生很快就在普林斯顿大学地质系(Guyot Hall)楼顶上装置起一个微波天线。准备寻找大爆炸的遗迹。

狄克的两个研究生和他们在普林斯顿为探测宇宙微波背景辐射制作的微波天线。

大爆炸发生在100多亿年之前,也无法在实验室中重复,自然没办法直接观测。阿尔弗、赫尔曼以及狄克、皮布尔斯推导出的宇宙温度却是大爆炸的一个直接后果,或者说“残留”。狄克觉得这应该能够观测到。

宇宙不是一个热平衡的世界。无数的恒星内部在发生强烈的热核反应,表面不断地发光发热。它们的表面温度至少几千度,内部更是达到亿度的量级。(在极高温尺度,绝对温度与摄氏度之间已经没有实质区别。)

然而,从空间、体积来看,恒星在宇宙中只占据微不足道的存在:它们在我们地球人的眼中不过只是“点点星光”。其余的广宇,是一片漆黑死寂,冰冷的世界。

不过,早在20世纪初,天文学家发现星星之间也不是完全的空空如也,而是弥漫着一些不明成分、来源的气体、尘埃,被笼统地称作“星际介质”(interstellar medium)。1940年,加拿大天文学家麦凯拉(Andrew McKellar)还观察到这些介质中居然存在有机分子。他测量到氰(CN)分子自由基(radical)的旋转光谱,推算出其能量分布相当于绝对温度2.4度。如果假设这些介质、分子与其周围环境处于热平衡状态的话,那么也就可以认定这些介质所处的空间的温度大约是2.4度。但是,直到他在1960年去世,麦凯拉的数据没有引起人们注意。

阿尔弗、赫尔曼、狄克、皮布尔斯等人所研究的宇宙温度却不是星星、介质甚至分子些实际物体的温度。在他们的理论模型中,大爆炸伊始的宇宙又热又稠密,充满了光辐射和质子、中子等基本粒子,互相搅成一团。当宇宙终于膨胀、冷却到质子与电子可以结合成稳定的氢原子之后,光子才能在宇宙中畅行无阻——此即所谓宇宙的第一缕光。那时的光子能量(频率)非常高。再经过一百多亿年的膨胀、冷却,光子的波长随着空间被持续拉长,其频率相应地红移变低。到今天,按照他们算出的宇宙温度,那些光子应该主要出于能量很低的无线电波段,也就是微波频段。

这些光子——如果存在的话——直接来自大爆炸开始的那颗蛋,充满了那时候还不很大的宇宙。在今天的宇宙中它们也就同样地会均匀地散布在整个空间而无处不在,成为宇宙恒定的背景。因此,它们被称作“宇宙微波背景”(cosmic microwave background)。

阿尔弗和赫尔曼当初在大学、学术会议上做过一系列讲座,希望能引起微波行家的兴趣,寻找探测这个宇宙大爆炸的遗迹,但无人响应。人们或者不相信这个天方夜谭,或者觉得这样的微波信号即使存在,也会太微弱,没有希望测出。

最令他们丧气的是,连他们的导师、向来喜好“异端邪说”的伽莫夫也没有买他们的账。两人后来相继找到不同的新工作,各奔前程,没有再继续这个课题。伽莫夫更是在学术上移情别恋,与刚发现脱氧核糖核酸(DNA)的双螺旋结构的沃森(James Watson)和克里克(Francis Crick)还有费曼(Richard Feynman)等人一起搭伙去试图破解生命遗传编码的秘密。在那之后十来年里,大爆炸理论陷入低迷。阿尔弗和赫尔曼所提出微波背景被人遗忘,直到被狄克、皮布尔斯重新“发现”。

就在狄克和他的学生们一切准备就绪、只待开机探测时,狄克接到一个意外的电话。


1957年10月4日,苏联成功发射人类第一颗人造卫星。次年,美国仓促成立航空航天局(NASA),应对新时代的挑战。航天局试图发掘卫星的实用价值,他们最早的尝试之一是发射一个简陋的球体,进入轨道后内部爆炸充气,成为大气层外的一个大气球。这气球的表面上涂有一层铝金属,可以反射电磁波。这样,他们从西海岸的加州发射微波信号,由卫星反射回地球表面,被东海岸贝尔实验室的天线接收,成功地实现横跨北美大陆的太空微波通讯。

这个气球卫星只是被动地反射电磁波,能回到地球表面的信号非常微弱。贝尔实验室为此专门制作了一个大型微波天线。接收微波的天线与日常熟悉的卫星天线不同,不是抛物面的圆盘,而是像早期的方形高音喇叭。这个天线长15米,喇叭口6米见方,以它所在的镇命名叫做“霍姆德尔喇叭天线”(Holmdel Horn Antenna)。天线内部探测微波信号的正是一个狄克辐射计。

航天局的这个项目没有太长的寿命。1962年,美国发射了第一颗正式的通讯卫星(Telstar),上面携带电子设备,可以将接收的信号放大后再播放,大大提高了使用效率。地面上也不再需要特制的大天线就可以接收到卫星信号。

于是,霍姆德尔这个天线沦为闲置。两个刚刚博士毕业来到贝尔实验室的天文学家彭齐亚斯(Arno Penzias)和威尔逊(Robert Wilson)看中了这个难得的高灵敏度、低噪音家伙,觉得可以用它来普查银河系的微波分布。于是他们着手天线的校准,逐个剔除可能的误差和环境噪音。

彭齐亚斯(右)和威尔逊在他们使用的贝尔实验室“霍姆德尔喇叭天线”前。

在排除了所有可辨认的噪音后,他们被一个奇怪而顽固的噪音所困扰。这个噪音无论白天黑夜都一样地存在。他们把天线对准邻近繁华的纽约市,然后转到反方向做比较,居然没有差别;他们又耐心地跟踪测量了几个月,让地球绕着太阳公转,也没有发现该噪音有任何季节性的变化。他们仔细检查仪器,发现有几只鸽子在天线里做了窝。于是他们花大功夫,将天线拆开,仔细清洗了多年积累的鸟粪(彭齐亚斯很专业地称之为“白色的电介质物体”)。他们驾车把鸽子送到很远的地方放生,但善于找路回家的鸽子很快又回来了,于是他们不得不拿起鸟枪来解决这个干扰源。然而,天线上测到的信号依然如故:无时不有无处不在。

无奈中,彭齐亚斯在与同行的电话中倾诉了他们这个烦恼。对方想起刚刚听过皮布尔斯的一个讲座,似乎有点关联,建议他与普林斯顿的那拨人联系求助。彭齐亚斯于是给狄克打了电话。狄克放下话筒时脸色死灰,当即告知他的团队:“伙计们,我们被人抢先了。”(“Boys, we've been scooped.”)

贝尔实验室距离普林斯顿不过60来公里。狄克一行驾车前往,共同分析彭齐亚斯和威尔逊的数据。没有太多的悬念,他们很快就确定令这两个倒霉蛋近乎疯狂的噪音便是他们在普林斯顿准备寻找的宇宙微波背景辐射——大爆炸的余波。(威尔逊在加州理工学院攻读博士时曾听过霍伊尔的课,因此对稳定态模型有印象。但他们俩对大爆炸理论均不甚了了,而对阿尔弗、赫尔曼的宇宙温度预测以及近在咫尺的狄克小组研究工作完全一无所知。)

他们实际测量的数据表明今天的宇宙背景温度是绝对温度4.2度,与理论预测相当接近。


1978年,彭齐亚斯和威尔逊因为这个无意的发现获得诺贝尔物理学奖。这是诺贝尔奖第一次颁发给与天文观测有关的贡献。

当年诺贝尔(Alfred Nobel)设立他那后来举世闻名的奖金时,在科学类上指明了物理、化学和生理医学——他觉得最实用的科目。天文学没有被包括在内。相当长时期内,诺贝尔奖委员会也不认可天文学是物理学的一部分。因此,历史上一些做过突出贡献的天文学家,包括勒梅特、爱丁顿、哈勃等等,都与这个奖项无缘。

因为狄克的决定性协助,彭齐亚斯和威尔逊曾邀请他在他们的论文中作为第三作者。狄克绅士般地谢绝,可能就此失去分享诺贝尔奖的机会。普林斯顿的小组另外撰写了一篇论文,与彭齐亚斯和威尔逊的观测报告同时发表,从理论上阐述那便是宇宙大爆炸留下的遗迹。

在领奖仪式上,彭齐亚斯才得以回顾他恶补的历史,突出介绍了伽莫夫、阿尔弗、赫尔曼等人的早期贡献。对已经去世的伽莫夫来说,这已经是第三次——也不是最后一次——在诺贝尔奖获奖仪式上收获到感谢。


(待续)



Sunday, July 14, 2019

宇宙膨胀背后的故事(十四):宇宙的年龄

二战之后的英国广播公司恢复了其传统、非常受欢迎的科学家、学者向大众解释学术问题的节目。剑桥大学的物理学家霍伊尔(Fred Hoyle)是常客,经常讲解一些天文课题。
1950年代,霍伊尔在英国广播公司录制科普节目。

在1949年的一次讲座中,霍伊尔提到战前勒梅特、伽莫夫的宇宙起源假说,很鄙夷地描述道:他们觉得宇宙的一切都是在过去某个特定时刻的一次“大爆炸”(Big Bang)中突然出现的。

他认为这很莫名其妙、简直岂有此理,与科学沾不上边。只是他所用的这个字眼非常形象且又通俗上口,很快就取代勒梅特的“宇宙蛋”、“原始原子”以及阿尔弗的“伊伦”,成为宇宙起源理论的代号:宇宙大爆炸。(“大爆炸”这个字眼在英国俚语中还带有色情含义。但霍伊尔坚持他当时没有邪意,只是在用大众化的语言解释科学理论。)

霍伊尔在节目中推销的是他自己的理论。二战期间,他与戈尔德(Thomas Gold)和邦迪(Hermann Bondi)一起在英国军队服务,研究雷达技术。战争结束后,三人又联袂加盟剑桥大学,重新研究天体物理。工作之余,他们还经常一起出去看电影。1945年的一个晚上,他们观看了恐怖名片《死亡之夜》(Dead of Night)。那电影的情节在结尾时回到了开头,因此呈现出循环反复、无穷无尽的结构。霍伊尔异想天开地觉得宇宙也可以类似地既在膨胀又没有起始、结局。他们把这个模式叫做“稳定态模型”(steady-state model)。
提出“稳定态宇宙”理论的剑桥天文物理学家(前排从左至右):戈尔德、邦迪、霍伊尔。

这个模型中的“稳定”并不是爱因斯坦当初的“静态”。他们的宇宙也还是在膨胀,但他们设想在星系因为空间膨胀而拉开距离的同时,中间会持续地冒出新的星球、星系来填补空档。这样从时间上看,宇宙依然是稳定“不变”的。就像一座城市在向外扩张,陆续在郊区修建新的住宅。城里的人逐渐往郊区迁移,他们腾出的空房子却也被新的外来户填充。这样,我们可以看到人口在不断向外移动(“膨胀”)。但如果看房子的居住情况(空间),却没有变化(稳定态)。

他们这个模型中的“外来户”是凭空冒出来的,没法解释——物理学中还找不出这么个机制。不过他们的对手——大爆炸理论——也是基于一个无中生有的蛋或伊伦。在稳定模型中,宇宙是永恒的,时间没有突然的起点,更容易为人接受。在1950、1960年代中,稳定态宇宙与大爆炸宇宙分庭抗礼,在物理学界各有拥趸,一直不相上下,甚至还几度占了上风。


21世纪初风靡全球的美国电视连续剧《生活大爆炸》(Big Bang Theory)每集的开场主题曲气宇轩昂地唱道:“我们的整个宇宙以前是一个又热又稠密的状态,然后在140亿年前开始膨胀……一切都起始于那一次大爆炸!”(“Our whole universe was in a hot, dense state. Then nearly fourteen billion years ago expansion started... That all started with the big bang!”)

剧名和歌词中的“大爆炸”来自霍伊尔的不屑;“又热又稠密”的初始状态来自伽莫夫的创见;而那个“140亿年前”的时间定位在历史上却不那么直截了当。自从爱丁顿“不寒而栗”地意识到大爆炸的宇宙会有一个时间起点后,宇宙的年龄便是一大争议所在,也是霍伊尔贬低这个理论时能抓住的一个软肋。

从爱因斯坦开始的宇宙模型是简化得不能再简化的“球形奶牛”,只有一个参数:宇宙中所有物质的平均密度。他最初的宇宙在时间上是静态的,自然没有年龄的概念。但在空间上“有限无边”,也就是宇宙有个大小,可以由密度决定。

那还是1917年。他用当时的数据做了个简单的估算,发现模型给出的宇宙半径约一千万光年。而那时已知的宇宙——也就是银河——不过一万光年左右。爱因斯坦在私信中多次提起过这个困境,却没有在论文中披露这个不利于他的证据。在那篇划时代的论文里,他只是在最后泛泛地交代了一句他的模型可能并不与当时的天文知识吻合。

区区十几年后。哈勃大大地扩展了宇宙的浩瀚。爱因斯坦在正式放弃宇宙常数、静止模型后,在1931年4月又发表了一篇论文,采用弗里德曼的宇宙模型再度估算宇宙的大小,还有随新模型而出现的宇宙年龄。

勒梅特、哈勃发现的宇宙膨胀规律是我们在地球上观察的星体径向速度与它们的距离成正比,比例系数便是所谓的“哈勃常数”。这个常数一般用天文单位表达,显得挺复杂。但其实,速度除以距离,结果是一个时间的倒数。在不再有宇宙常数的广义相对论场方程里,如果假设从“大爆炸”开始宇宙一直在以同样的速度膨胀,那么哈勃常数的倒数正好就是膨胀所经历的时间跨度——宇宙的年龄。

这样一来,由抽象的数学定义的宇宙模型便可以与实际的观测直接联系上了。或者反过来,通过实测的哈勃常数,也可以倒推出宇宙的年龄、密度、大小等等。爱因斯坦因此得出宇宙的年龄约100亿(1010)年。
爱因斯坦1931年在牛津大学讲解宇宙模型时手写的黑板。最后三行分别是宇宙密度、半径、年龄。因为他演算有误,这些数值即使在当时也并不正确。

不幸的是,他在单位换算过程中出了错。根据勒梅特、哈勃当时所给出的哈勃常数,宇宙的年龄应该只是20亿年左右。

20世纪初发现的原子核衰变在各方面有广泛的实际应用,其中之一是在地质考古上鉴定古物年龄。因此,即使在1920年代,人们已经知道地球的年龄可能高达15至30亿年。对于大爆炸理论的支持者来说,这是相当的尴尬:我们的太阳系居然会比宇宙出现得更早!

勒梅特最初发现宇宙膨胀速度与距离的正比关系是理论推导的结果,然后才在实际的星云数据中寻找证据。两年后,不知情的哈勃正相反,他纯粹是从观测数据中找出的这个规律。其实,他在1929年发表的那个图中的数据点相当发散,只能勉强地看出其中有线性关联。(温伯格后来评论说,哈勃是发现了一个他预先知道他要找的答案。当然,哈勃之所以有足够的自信,是因为胡马森已经测到了更远的星云数据也支持这个线性关联。)

那些数据点没有很好地集中在直线上,是因为它们有着相当大的误差。用光谱中的多普勒效应测量速度非常精确,误差极小。而距离的测量却十分勉强:无论是视差法、勒维特的造父变星“周光关系”、还是哈勃后来所用的各种光强估算,都会有相当大的、而且随距离越远越大的误差。这造成所测得的哈勃常数不可靠。


为了提高天文观测的精度,威尔逊山天文台台长海尔一直在为胡克望远镜之后的下一代大型天文望远镜游走、筹款、设计。胡克的口径是2.5米,他所钟情的下一个望远镜要大出整整一倍,口径达5.1米。经过二十年的努力,当那望远镜终于在二战之后由加州理工学院领衔制成,安装在新成立的、距离威尔逊山不是很远的帕洛玛天文台(Palomar Observatory)时,海尔已经去世十年了。为了纪念他,这座新的庞然大物被命名为“海尔望远镜”。

二战开始时,已经年过半百的哈勃少校当即告别威尔逊山,再次投身军旅。他在东部的陆军弹道实验室指导,改进了炸弹、炮弹的使用效率。为此,他获得一枚军功章(Legion of Merit)。

威尔逊山上其他天文学家也都下了山,以各种方式精忠报国。山上只有寥寥几个人留守,其中之一是德国天文学家巴德(Walter Baade)。巴德曾经因个人原因签字效忠纳粹政府,因此在美国被当作敌侨看待,只是在他的好朋友胡马森等人的担保下才没有进集中营,被容许自我软禁于天文台内。阴错阳差,巴德因此获得好几年独霸望远镜的良机。更得天独厚的是,因为害怕日本人空袭,山下的洛杉矶市实行灯火管制,往常的灯火辉煌变成漆黑一片,正是天文观测的最好时机。巴德因此用胡克望远镜拍出了哈勃、胡马森从没能得到过的更清晰照片,第一次在仙女星云中分辨出单个的星星,并从中发现星星中还存在不同的分类。

二战结束后,哈勃回到威尔逊山。他似乎换了一个人,不再像过去那样专横跋扈、目空一切。已知天命的他试图更人性化地与同事们修复关系,却已经太迟了。凭着他的声望,哈勃以为自己会是帕洛玛天文台第一任台长的当然人选,却因为有太多人反对而落空。他甚至在海尔望远镜的使用安排上也失去了发言权,只是在该望远镜终于投入使用时获得用她看第一眼的象征性荣誉。

无论是在威尔逊山还是帕洛玛,哈勃的地位逐渐被胡马森和巴德取代。巴德用海尔望远镜发现其实造父变星也与恒星一样有两个不同的类别。当初勒维特发现“周光关系”的那些造父变星与后来沙普利、哈勃用来丈量星团、星云距离的其实不是同一类。因此,这个“宇宙距离阶梯”不能直接衔接,需要修补。

1952年,巴德在国际天文学会年会上宣读了修正后的结果:哈勃常数的数值应该是哈勃20多年前估算的一半。相应地,宇宙的年龄增加了一倍,约36亿年。在座的天文学家大为惊异。霍伊尔正好在场负责官方记录,大概内心颇为失落。而倾向于大爆炸理论的人不由大大地松了一口气。

随后,巴德的研究生桑德奇(Allan Sandage)也发现哈勃在用星云中“最亮的星”估计距离时所看到的其实不是星,而是星云中发光的“电离氢气体”(H II region),其亮度与星体不同。因此哈勃的估算的距离更不可靠,他的修正又把宇宙的年龄增加到55亿年。(哈勃常数的数值一直是天文学界争议之处,迟至1996年还专门举行过“大辩论”。今天比较一致的看法是宇宙年龄在140亿年左右。)

尽管哈勃常数的数值屡屡被大幅度修正,哈勃定律本身——星星的径向速度与距离成正比——却一直经受住了考验。它所揭示的宇宙膨胀规律也不断地在现代天文观测中被进一步证实。

桑德奇在1953年获得博士学位。哈勃在同一年因脑血栓去世,终年63岁。他生前的遗愿是要静悄悄地离去。在他1949年严重心脏病发作后就一直悉心照料他的夫人格蕾丝独自操办了后事,没有葬礼没有墓碑。她在1981年去世之后,世界上再没有人知道哈勃的长眠之地。

桑德奇毕业后一直在帕洛玛天文台工作,成为新一代的天文大师。他和胡马森曾试图用海尔望远镜观测更远的星系的红移光谱,延续哈勃的香火。但他们没能成功,洛杉矶夜益灿烂的灯火永久性地湮没了望远镜中微弱的星光。


伽莫夫当初提交那份具里程碑意义的 αβγ 论文时,还曾老实地在贝特的名下标注他为“缺席作者”(in absentia)。这个怪异的做法引起杂志编辑的好奇,专门去询问贝特。贝特才知道好朋友在盗用他的大名。他也是一个天性好事者,当即满口同意在这篇与他无关的论文上挂名。他调皮地说:没准儿这论文里说的会是对的。

贝特的运气没有那么好。阿尔弗很快意识到“伊伦”不可能是只有中子那么简单,应该包括电子、质子、正电子等,更多的还会有光子、中微子等没有质量的“纯”能量。随着这些计算变得越来越复杂,只喜欢鼓捣新主意的伽莫夫不再有兴趣纠缠细节。他正好有学术假,便暂时离开了乔治华盛顿大学,出外讲学、科研。

阿尔弗也已经博士毕业了。在没有伽莫夫的日子里,他身边也另有一个伙伴:赫尔曼(Robert Herman)是普林斯顿大学的物理博士,曾经师从罗伯森研修广义相对论。他们俩都是犹太裔,属于在美国出生的欧洲移民第二代。两人都有正式工作,白天需要兢兢业业地上班,只有在业余时间才一起继续钻研宇宙起源,完善他们的“伊伦”模型。
阿尔弗和赫尔曼合著的《大爆炸起源》一书封面设计。图中赫尔曼(左)和阿尔弗(右)看着伽莫夫(中)如同精灵般从一个标志着“伊伦”的酒瓶中冉冉升起。

伽莫夫对赫尔曼尤其亲睐,因为赫尔曼自小学得流利的俄语,是伽莫夫背诵普希金(Alexander Pushkin)长诗的忠实听众。但让伽莫夫失望的是赫尔曼却不愿意将自己的姓改为德尔特(Delter),好延续出希腊字母表的下一个字母“德尔塔”(δ)。

在元素的来源解决之后,伽莫夫琢磨的是星系的来源。也还是在1948年,他在《自然》发表了一篇论文,论述大爆炸几十万年之后,宇宙终于冷却到氢、氦原子可以稳定、持久地存在,而不被高能的光子持续电离。它们之间的引力作用会产生质量分布的涨落,相对密集的地方便会逐渐形成最早期的星系。利用一些最简单的假设和几个物理常数,他便推算出了那些最早期星系质量与大小的关系。

阿尔弗和赫尔曼看到这篇论文后,立即发现老师的数学演算有问题。伽莫夫从善如流,建议他们自己写一篇文章为他纠错。他们俩在两星期内就给《自然》交了稿,不仅纠正了伽莫夫的错,还推广了他的想法,做出一整套计算宇宙从初始至今状态的方法。他们意识到,因为大爆炸之后宇宙一直在“绝热膨胀”,通过宇宙模型和哈勃常数,不仅能推算宇宙的密度、大小、年龄,还能得出宇宙的温度。

他们在论文中简单明了地指出:“推算出的今天的宇宙的温度大约是5度”(绝对温度,即摄氏零下268度)。


(待续)

Wednesday, July 3, 2019

宇宙膨胀背后的故事(十三):宇宙万物始于“伊伦”

伽莫夫1904年出生于俄国(现乌克兰)黑海的港湾都市敖德萨。他父母都是中学教师(父亲曾经是后来苏联革命领袖托洛斯基(Leon Trotsky)的老师。),家里藏书丰富。伽莫夫酷爱俄国传统的长诗,同时也表现出对数理科学的爱好和天才。他在中学时就自学了那时还非常新颖的狭义相对论。

一战、十月革命和其后的内战搅乱了他的大学时代,但他还是凭能力被列宁格勒大学破格录取为物理研究生。那里有弗里德曼,是研究广义相对论的好地方。不料他入学刚一年,弗里德曼便英年早逝。

伽莫夫还遇到别的麻烦。因为对大学课堂教学之刻板、落后不满,他与朗道(Lev Landau)及另两个同学组成一个自学小组,钻研课堂上还未涉及的量子物理。当他们看到一位当红哲学教授的一篇用辩证唯物主义批判爱因斯坦相对论的文章时,忍不住联名写了一封嘲笑的信给教授寄去。没想到却惹出大祸,被定性为反马克思主义、反革命行为。他们遭到处分、批判,朗道还丢了教书的饭碗。

同情他们的教授赶紧推荐他们出国留学,伽莫夫因此有了去德国的哥廷根大学度一个夏季的机会。

那是1928年,量子力学的波动理论刚刚出现不到两年。伽莫夫发现哥廷根的所有人都在兴致勃勃地求解各种原子的波函数。他一不愿意随大流,二则对那越来越复杂的数学毫无兴趣,便别出心裁地琢磨起原子核的衰变。

随着放射性在19、20世纪之交被发现,人们认识到原子核有三种衰变方式,分别以希腊字母表的前三个字母标志:阿尔法(α)衰变、贝塔(β)衰变、伽玛(γ)衰变。它们的区别是从原子核中逃逸而出的粒子:分别是带正电的氦原子核(也叫做阿尔法粒子)、带负电的电子和不带电的光子。

从比较大的原子核里面跑出来比较小的氦原子核似乎不奇怪。但阿尔法衰变的困惑之处是,同样能量的阿尔法粒子可以从原子核中逃出,却不能反过来钻回去。原子模型的提出者、最先辨识出阿尔法粒子是氦原子核的卢瑟福(Ernest Rutherford)发现,即使用具备两倍动能的阿尔法粒子去轰击铀原子核,也无法突破。他只好生造出一个理论来解释这个奇怪的现象。

伽莫夫读了卢瑟福的论文后当即觉得大谬不然。他有一个更好的解释,就是量子力学中的“隧道效应”(tunneling)。在经典力学中,氦原子核要从铀原子核中逃出来,必须具备能克服后者壁垒的动能(相当于从地球上发射能离开地球束缚的航天器所必须的“逃逸速度”)。但在量子力学里,描述阿尔法粒子所在地点可能性的波函数即使在高高的壁垒下也有一定数值,说明它不需要具备能克服壁垒的能量就会有一定可能性逃逸——就像面对一堵高墙并不需要从上面翻过去,而可以在下面打个隧道钻过。因此,衰变出来的阿尔法粒子的动能比需要克服的壁垒低得多,没法自己跑回去。

有了这个思想后,伽莫夫很快作出演算,推导出符合实际测量的衰变“半衰期”与能量的关系。(唯一的困难是他碰到一个积分不会做,只好求救于一位也在哥廷根的俄国数学家,并在论文中为此正式鸣谢。后来那人抱怨说他在同行中已经不幸沦为笑柄。因为很多人去打听他究竟为这个重大物理发现在数学上做出过怎样的贡献,而他只不过做了一个非常初级的积分题。)

这是量子力学在核物理中的第一个运用,开创了原子核理论的新局面。

夏天很快就过去了。伽莫夫在归国途中绕道丹麦,作为不速之客拜会了量子理论的泰斗玻尔(Niels Bohr)。玻尔听了他的衰变理论,立即为已经囊空如洗的伽莫夫安排一份资助,让他留在玻尔研究所访学一年。伽莫夫不负重望,在那里提出了原子核内部结构的“液滴模型”(liquid drop model)。这个模型后来由玻尔和惠勒(John Wheeler)推广,解释原子核的裂变,成为研发原子弹的基础理论。

(他们还在看了美国西部侠客电影后为决斗时的拔枪速度问题入迷。玻尔认为后拔枪的(英雄人物)能够后发先至是因为他只纯粹靠反应,动作快;而先拔枪的(匪徒)脑子里要做一个什么时候拔枪的决定,所以动作会慢。伽莫夫专门上街买了玩具枪、枪套和牛仔帽等道具,让玻尔与众人逐一比试。多少年后玻尔还会津津乐道他当年如何一枪击倒了伽莫夫。)

1930年,26岁的伽莫夫在哥本哈根的玻尔研究所参加学术讨论。前排从左到右:克莱因(Oskar Klein)、玻尔、海森堡、泡利(Wolfgang Pauli)、伽莫夫、朗道、克拉默(Hans Kramers)。

同时,他也反过来计算让带正电的质子(氢原子核)、阿尔法粒子通过隧道效应克服壁垒打进原子核的可能性。出于玻尔的推荐,卢瑟福邀请伽莫夫到剑桥访学。他去后与那里的考克饶夫(John Cockcroft)和沃尔顿(Ernest Walton)合作。根据他的计算,那两人设计出加速器,第一次用人工加速的质子打开了锂原子核。他们后来获得1951年诺贝尔物理奖,在获奖感言中感谢伽莫夫所起的关键作用。


年轻的伽莫夫在海外两年取得的成绩让更年轻的苏维埃政府欢欣鼓舞,破格授予他苏联科学院院士称号。《真理报》还为他登载了热情洋溢的赞誉长诗。那时,他年仅28岁。

然而,他回到祖国的日子并没有因此好过。他的护照被吊销,申请出国参加学术活动屡屡被拒。他讲授量子力学时竟被党领导当堂叫停,警告他再也不能言及“测不准原理”这种不符合辩证唯物主义的谬论。李森科(Trofim Lysenko)主义在生物界的横行更是让他觉得前途充满着威胁。他无可奈何地感慨,哲学家在自由的国家里不过是无害动物,但在专制国度里却会带来异乎寻常的危险。苏联正在成为一个意识形态挂帅的国家,他身在其中格格不入,唯一的出路只有出走。他与新婚妻子花了几年时间侦查、计划偷越国境的途径。他们曾经在一个黑夜试图用皮划艇偷渡黑海,但被突然的风暴吹回而功亏一篑。

还是玻尔、朗之万(Paul Langevin)等西方科学家意识到伽莫夫的困境。他们想方设法通过上层关系说服苏联当局允许伽莫夫出国访问。当他终于有一次机会时,他坚持必须与妻子同行,为此当面向总理莫洛托夫(Vyacheslav Molotov)陈情。获得批准后,他们俩终于在1933年借参加第七届索尔维会议时离开苏联,走上了不归路。(玻尔和朗之万对伽莫夫的“不守信用”颇为生气,还是居里夫人(Marie Curie)从中斡旋才平息了风波。)

短短几年后,苏联开始肃反大清洗。伽莫夫的朋友、也已经在物理学界声誉鹊起的朗道被判刑坐牢。他们当年学习小组中的另一个成员被枪决。伽莫夫叛逃后,不仅被苏联科学院开除,还被缺席判决死刑。


因为一个偶然机会,还在欧洲流亡的伽莫夫被位于美国首都华盛顿特区的乔治华盛顿大学聘请为教授。他接受这个职位时提了几个条件,其中之一是每年要举行一次学术会议,由他选取主题、邀请各路大侠,在美国创造一个犹如玻尔研究所那样的氛围。(他的另一个条件是必须同时聘请他的好友、也在落难之中的泰勒(Edward Teller)。泰勒后来不仅是伽莫夫长期的合作伙伴,而且成为美国“氢弹之父”。)

伽莫夫为1938年的第四次会议选定的主题是恒星发光能源的来源,这是他当初游学时也曾浸淫过的课题。

早在十几年前,爱丁顿就设想过两个氢原子可以在一定条件下结合成一个氦原子。根据他们的质量差别和爱因斯坦著名的“质能关系”,这样的“聚变”能够释放出能量。他猜想那很可能是太阳发光的能量来源。在伽莫夫解释阿尔法衰变后,聚变才成为一种更真实的可能,因为氢原子核也可以利用隧道效应突破各自的壁垒。

受伽莫夫组织的会议讨论启发,他的好友贝特(Hans Bethe)发展出一整套核反应过程,系统地解释了太阳光的来源。贝特后来因此获得1967年诺贝尔物理奖,伽莫夫的名字也再次出现在获奖感言中。

1939年1月26日,从欧洲来访的玻尔在伽莫夫的第五次会议上第一次公开了实现铀原子核裂变的消息,人类进入一个新的时代。在那之后,伽莫夫的会议还举办了三次。但他发现越来越难请到人了。他身边的物理学家——包括贝特——相继在神秘地失踪。

作为首屈一指的核物理专家、液滴模型的提出者,伽莫夫却无缘和他的同行们一起参加美国建造原子弹的“曼哈顿计划”。因为他过去在苏联当红时,曾经因为在军事学院授课的需要而有过一个红军军衔,无法获得美国军方绝密级别的许可。他只有较低层次的涉密资格,得以与爱因斯坦一起协助美国海军的炸药、爆破研究。(正是在那个接触中,他声称爱因斯坦对他说过引入宇宙常数是他一生最大的失误的话。)

即使在战争期间,无论是在忙着造原子弹的贝特还是研究炸药的伽莫夫,也没有完全忘记探寻大自然本身的奥秘。


中国很早便有了金、木、水、火、土之“五行”,认为那是构成宇宙万物的基本材料。印度、希腊等古文明也都有大同小异的概念。这些“元素”之所以被选中,是因为它们在地球的生活环境中最常见,似乎很普适。

现代科学家认识到真正的元素是一百多个不同的原子,它们的化学性质由其原子核中质子的数量决定,并以此可以排列成所谓的元素周期表。原子核中还有不带电的中子。质子与中子质量差不多,它们的总数决定原子核的重量——也就是相应原子的重量,因为电子的质量相对可以忽略不计。当一个原子具有相同的质子数但中子数略有差异时,它们属于略有区别的同一元素,叫做“同位素”。

除了简单的金属,金木水火土这些材料主要由比较重的元素构成的分子组成(辅之以最轻的元素氢)。当天文学家放眼宇宙,用光谱分析技术辨认群星的元素构成时,他们发现地球上常见的那些元素在宇宙中却是少得可怜。

我们居住的地球虽然挺大,其实非常微不足道。太阳系的质量99.9%集中在太阳这颗恒星上。其中74.9%是最轻的元素氢,23.8%是第二轻的元素氦(氦这个元素最早就是在太阳的光谱中发现的),另外1%是氧。而太阳中其它各种元素的总和不到百分之一。太阳并不特殊,宇宙中所有恒星的构成也与太阳类似。其它发光的类星体、星际间的气体、尘埃等也基本上由氢、氦这些最轻的元素组成。

20世纪初期是原子、原子核物理飞速发展的年代。物理学家知道,越重、越大的原子核越不稳定,会发生衰变。因此,最轻、稳定性最好的氢、氦在宇宙中占绝大多数这本身并不那么令人惊诧。也许,这就是各种元素在宇宙这个大环境中相互发生反应、转换的结果。

在二战之前,物理学家就已经能够根据已知的原子核稳定性和反应的数据推算在不同的温度、压力条件下处于平衡态的各种元素会具备的比例。只是结果差强人意:无论怎么努力,他们都没法得到宇宙中所有的比例。在所有状态下,较重的元素只应该比氢、氦稍微少一些,不可能像现实中的那么极其稀少。即使在恒星内部那种超高温、超高压的环境中也是如此。

还是伽莫夫看出了其中的奥妙:宇宙中的原子不是现在才有的,而是直接来自勒梅特的那颗“宇宙蛋”。它们的比例在宇宙诞生之初便确定了,像化石一样保存至今。


乔治华盛顿大学有一个很特别的传统,大多数专业课程是在晚上讲授。当地很多在政府、企业、军队的人白天正职上班,晚上利用自己的业余时间来这里进修。

1952年的伽莫夫(左)在给青少年讲解科学。

伽莫夫的物理课堂里有一位年轻人阿尔弗(Ralph Alpher)。他是美国海军的技术人员,白天上班为国家做贡献,晚上在夜校研习物理,就这样从大学一年级一直到完成博士学位。他在伽莫夫指导下完成硕士论文时,正是同盟国在欧洲胜利那一天。之后,他又兢兢业业地进行繁杂的数学推导,完成伽莫夫布置的一个有关宇宙结构的博士论文课题。就在他大功告成之际,伽莫夫发现朗道的一个学生粟弗席兹(Evgeny Lifshitz)在苏联也做了同样的博士题目并已经发表。被抢了先的阿尔弗一气之下烧毁了他所有的演算手稿、笔记。

没办法,他们只好从头开始。这次伽莫夫便和盘托出他一直在琢磨的宇宙中元素分布问题。

当年伽莫夫完成了阿尔法衰变理论之后也曾经试图弄明白原子核的贝塔衰变。带正电的原子核里怎么跑出了带负电的电子那时是未解之谜,他也束手无策。直到1932年中子被发现,贝塔衰变的过程才得到理解:原子核内的中子衰变时转换成为质子同时释放出一个电子(外加一个“中微子”)。

中子不带电,因此不受带正电的原子核排斥,比质子、氦原子核更容易钻过“隧道”进入原子核,引发原子核的嬗变。这个过程叫做“中子俘获”(neutron capture)。伽莫夫设想原来很小的原子核可以通过俘获中子越长越大,同时中子衰变增加原子核中的质子数,这样可以制造出越来越大、越来越重的新元素。

爱丁顿已经在1944年因病去世。令他不寒而栗的“倒带”式回放宇宙的历史在伽莫夫这里有了更具体的物理意义:整个宇宙是热力学上一个所谓的“绝热系统”(adiabatic system),不可能与外界有任何能量交换——因为压根就不存在什么“外界”。这样的系统在膨胀时压力、温度会降低,而压缩时压力、温度会升高。把宇宙回溯到勒梅特的“原始原子”时,那颗原子的内部是一个压力、温度都处于极大值的世界。那异乎寻常的高温、高压会远远超过今天恒星内部所能有的状态。

在那样的高温、高压状态,我们今天所熟悉的分子、原子都无法存在,而是完全分解成最基本的质子、中子、电子。只有在宇宙开始膨胀,温度、压力降低时,它们才可能重新合并。

伽莫夫想象勒梅特的宇宙“原始原子”在高压、高温下是完全由中子组成。当这个超大原子“破裂”时,相当一部分中子会衰变质子和电子。质子与电子结合便成为氢原子。氢原子核(即质子)俘获中子成为氢的“同位素”氘。氘核中的中子衰变或者氢与氘的聚变产生氦。氦非常稳定,基本上不再发生核反应,只有极少数还会继续俘获中子、质子产生一定锂和铍。

在初始宇宙中,这些反应不是同时发生的。每个反应发生在某一个特定时刻,因为宇宙蛋破裂后,压力、温度会随着膨胀急剧降低。这些反应所需要的温度“稍瞬即逝”。当一部分氢、氘原子在初始宇宙的合适温度下聚变成氦后,宇宙的温度已经下降,剩下的氢原子错过了这个村,便不再有同样大规模聚变成氦的店,便永久地以氢原子存在于逐渐冷却的宇宙之中。

因此,我们今天的宇宙便遗留了大约75%的氢、25%的氦以及极其少量的氘、氦同位素、锂……

那么地球上熟悉的金木水火土等重元素又是从何而来的呢?它们与初期的宇宙无关,出现得相对很晚。当宇宙冷却到一定程度,大量的氢原子凝聚成恒星,在其内部因重力引发热核反应。在这个过程中,氢继续聚变为氦,同时发光发热。当氢原料耗尽时,后继的热核反应和压力迫使原子继续聚变,逐步产生更大、更重的元素。这些新物质在超新星爆发、星球碰撞等激烈过程中被抛洒出来,又相继凝聚为地球这样的行星——我们的世界。(伽莫夫的初衷是所有元素可以通过俘获中子陆续出现,但后来发现这个所谓“核合成”(nucleosynthesis)的链条中有两次断裂,只能借助恒星内部的条件才能延续。)


阿尔弗设法找到当时最新的核反应数据后,对最初期的宇宙那颗蛋做了几个基本假设,便推算出在勒梅特的膨胀宇宙条件下氢、氦等元素应该有的浓度,与今天的现实宇宙吻合得很好。这个新的宇宙模型第一次能够解释为什么氢、氦之外的元素在宇宙中会如此稀少。

论文完成后,伽莫夫看到他们俩的署名又心生促狭,不顾阿尔弗的激烈反对硬在两人中间塞进了他的好朋友贝特的名字。他没有什么用意,只是让这篇论文的作者排列(阿尔弗、贝特、伽莫夫)听起来就像希腊字母表的“阿尔法、贝塔、伽玛”。

这篇论文的题目就叫《化学元素的来源》(The Origin of Chemical Elements),发表在1948年4月1日《物理评论》上,那天正好是西方传统的愚人节。

那时候还没有后来的《物理评论快报》,这篇不过一页多一点的短文是以给杂志的信的方式来通报一个最新进展。但其影响极其显著,被永久性地称之为“阿尔法-贝塔-伽玛论文(αβγ paper)。阿尔弗后来以此成果进行博士论文答辩时规模空前,有300人前来参加,其中还有特意来采写新闻的记者。对论文本身没有贡献的贝特也应邀作为答辩委员会成员躬逢其盛。

1946年4月1日《物理评论》上发表的 αβγ 论文。

牧师勒梅特是第一个将爱因斯坦的广义相对论宇宙模型与现实的星云光谱测量数据联系起来的物理学家,为抽象、纯数学的宇宙理论与实际的物理世界搭起了第一座桥梁。但他的“宇宙蛋”也还只是一个抽象的概念。阿尔弗、伽莫夫第一次将最前沿的核物理引入了勒梅特的理论,为宇宙学的下一步发展开辟了一条新颖的蹊径。他们的初始宇宙具体为在一定温度、压力下存在的中子,以及在膨胀过程中逐步通过核反应所产生的越来越丰富的原子、分子。

为了显示与勒梅特抽象的“原始原子”的区别,阿尔弗找来一本巨大的词典,在其中寻寻觅觅,终于发现一个异常生僻的词“伊伦”(ylem)。其含义是古人想象中最初的、宇宙万物均由它而生的神奇物质,用来描述他们这个由中子构成的高温高压之宇宙起源倒也正合适。

不过无论是勒梅特奇葩的“宇宙蛋”还是阿尔弗诡异的“伊伦”,在大多数物理学家眼中都还是匪夷所思的幻想。在被认可、接受之前,还得如柯蒂斯当年所提倡的——需要更多的证据。


(待续)


科普


Thursday, June 13, 2019

宇宙膨胀背后的故事(十二):勒梅特的“宇宙蛋”

当伽利略在17世纪初把他自制的望远镜指向满天星辰时,他改变了人类对太阳系的认识。18世纪的赫歇尔用他更大的望远镜数星星,人类的视野从而扩展到银河——他们心目中的宇宙。在1920年代末的短短几年里,哈勃用胡克望远镜先是揭示了宇宙比过去想象的更大、更广阔得多,继而又察觉宇宙不是静止的,而是处于膨胀之中。这又一次颠覆了人类的宇宙观,引发更多科学乃至哲学上的新思考。

1931年1月5日,爱因斯坦还在洛杉矶过新年时,爱丁顿在英国数学学会年会上发表了一篇题为《世界的终结》(The End of World)的主题演讲。他指出,如果宇宙一直膨胀下去,星系、星球之间的距离越拉越长,终将失去彼此之间的引力关联。这样,每个星球各自孤立,像热力学中所谓的“理想气体”中的原子一样自由运动,最后会趋向一个完全随机、无序的死寂世界。

这是物理学界从18世纪开始就推测过的“热寂”(heat death)。热力学中的孤立系统会自然地从有序走向无序,而浩瀚的宇宙从总体上看也正是这么一个孤立系统。宇宙的膨胀使得这样的一个世界末日变得更为现实、具体。

但这却并不是最让爱丁顿心烦的。毕竟世界无论何时、如何终结都还只是太遥远的未来。他更操心的是过去,也就是已经发生过的事情:我们今天看到的宇宙是膨胀的结果。在这之前,宇宙会比较小,星系之间会更密集。他充满戏剧性地描述道:如果像看电影“倒带”那样往回放,我们就会看到宇宙越来越小,星星之间越来越近。最终我们会看到这么一个时刻,宇宙的所有星星、星系、原子、分子、光子等等全都压缩到一个点上。然后……

然后就没法再继续倒带了——因为我们终于倒到了尽头。

爱丁顿表示这个想法让他不寒而栗。因为这意味着宇宙、时间都不是永恒的,有着一个的起始点。他抱怨道,“从哲学意义上来说,说我们所处的自然世界会有一个确定的起点,我觉得无法接受。”


爱丁顿这个演讲在那年3月初的《自然》杂志上发表。不久,杂志便收到了来自爱丁顿当年爱徒的回应。勒梅特也在思考同一个问题,便顺手写了一篇笔记,题目针锋相对地叫作《世界的开端——量子理论的观点》(The Beginning of the World from the Point of View of Quantum Theory)。这篇文章简短得不到500个英文词,没有一个数学方程式,内容却是石破天惊。

勒梅特旗帜鲜明地指出宇宙的确有一个开端,对这么一个概念也没必要像爱丁顿所感觉的那么难以想象、接受。

20世纪初物理学的一个重大发现是放射性。及至1931年,人们已经知道越大、越重的原子越不稳定,会自发地发生衰变。勒梅特觉得最初始的宇宙就是一个特别的原子——他把它称做“原始原子”(The Primeval Atom)。这个原子的尺寸是无穷小,但质量却是现在宇宙所有物质质量的总和——也就是说这个原子的“原子序数”(atomic number)是宇宙中所有质子数的总和(当时中子尚未被发现,原子质量便是其中的质子数目)。拥有如此巨大原子序数的原子自然会很不稳定,便会自发地衰变,逐次分裂成越来越小的粒子(当时,原子核“裂变”(fission)的概念尚未出现。),由此便逐渐演化出了宇宙。

勒梅特1950年出版的宇宙起源专著《原始原子》(英文版)。
通俗一点,勒梅特也把这个孵化出整个宇宙的原始原子直接叫做“宇宙蛋”(Cosmic Egg)。


其实,在勒梅特之前,宇宙大小变化的真正始作俑者弗里德曼就考虑过同样的问题。弗里德曼发现的广义相对论的解中,宇宙大小既可以膨胀也可以塌缩。他最感兴趣的是宇宙是否可能在不停地来回“振荡”:膨胀到一定程度的宇宙会达到某个极限,然后反着收缩回来,直到极小,然后又开始膨胀……我们现在的宇宙有可能只是这个周期之中的一个。

身在苏联信息不通的弗里德曼对西方天文学家光谱红移的测量结果几乎没有了解,因此不可能把他的理论与实际沟通,只是围绕着场方程做数学游戏。在论文中,他只能提醒读者现时的实验数据尚不足于帮助我们确定宇宙真正的演变方式。

但是,如果宇宙是从一个大小为零的初始态膨胀到今天,作为虔诚教徒的他便自然地把这个过程叫做“创世纪以来的时间”(the time since the creation of the world)。也就是说,时间有一个开端,那便是圣经中的创世纪。

只是他的这些推测当时只有爱因斯坦等寥寥无几的理论学家有些许了解,直到勒梅特、哈勃的突破之后才开始为人所广知。

与弗里德曼不同的是,勒梅特在解释他的宇宙起源理论时有点战战兢兢。他小心翼翼地避免任何与宗教发生纠葛的可能,从来不像弗里德曼那样用“创世”(creation)这样的字眼,只是说“开端”(beginning)。

尽管如此,他的牧师身份——加上他的这个“宇宙蛋”实在太像圣经的创世纪——使得大多数物理学家不得不怀疑他是在挂羊头卖狗肉,打着科学的旗号贩卖宗教的私货。

正在讲解宇宙理论的勒梅特牧师。
宇宙学是研究“天堂”的学问,自古以来便不能不与上帝纠缠不清。亚里士多德、托勒密等人的天球之所以能绕着处于宇宙中心的地球旋转,便是因为有天球之外的神在推动。这个原始的宇宙模型被哥白尼的日心说取代后,牛顿在用他的经典力学完美地描述了太阳系诸行星周而复始的运动,证明这运动是自己持续,不需要神仙帮忙。但他的物理定律却无法解释这运动最早是如何开始的,于是也是虔诚信徒的他猜想当初应该是上帝推了一把。

这就是所谓的“第一推动力”(first cause)。

在众多呈涡旋形状的星云被发现后,太阳系中行星绕太阳的公转不再需要什么第一推动:太阳系只是银河的一部分,而银河这个星云本身就有旋转运动。当然,星云从何而来,又是怎样旋转起来的,依然是一个谜。也就是说,第一推动——如果有的话——也是会发生在太阳系之外,更远更早的时候。

勒梅特的“宇宙蛋”则干脆把“第一推动”的可能性置放在最早的时刻:宇宙的诞生、时间的零点。

从哥白尼、伽利略以降,无数探索科学的先驱曾经饱受宗教威权的压力、惩罚,付出过相当的代价。20世纪的勒梅特则幸运得多,他的最接近“创世纪”的探索不仅没有被教会看作异端邪说,反而被认定为圣经的科学证明,因此对他大为赞赏。

已经处于科学和宗教夹缝中的勒梅特对来自教会的支持大不以为然。与他的牧师身份相比,他更是一位受过系统、严格学术训练的科学家,坚持“宗教的归宗教、科学的归科学”。他一再声明他的宇宙起源学说完全出自广义相对论的数学方程,没有任何先验成分。(他那篇《自然》论文的底稿上原来有个结尾,感叹物理学之奇妙,为上帝提供了一层面纱。在送交之前,他明智地删去了这句可能引发歧义的话。)

勒梅特在1936年教皇科学院(Pontifical Academy of Sciences)设立之初便是成员之一。当教皇(Pope Pius XII)在1951年正式宣布勒梅特的理论是对天主教的科学证明时,勒梅特公开表示了异议,再次指出他的理论与宗教无关。他和教皇的科学顾问一起成功地劝说教皇不再公开谈论神创论,更不再评论宇宙学。


牛顿的“第一推动力”背后,其实暗藏着经典物理学的一个辉煌成就。法国学者拉普拉斯(Pierre-Simon Laplace)曾经总结道:如果我们能够完全掌握世界在某一个时刻的全部信息——所有的作用力、所有原子所在的位置和速度——我们就可以通过物理定律完全、准确地预测将来任何时刻世界的状态。也就是说,一旦初始状态确定,我们便可以完全预知未来,既不需要有上帝来操纵,也不再有任何随机、非自然因素干扰。

如果说拉普拉斯所描绘的前提需要太多的信息量、超越人类的知觉能力的话,勒梅特把它“简化”成为一个极其简单的初始条件:原始原子。这个原子处于最理想化的有序状态(用热力学的语言便是它的“熵”是零),其中却蕴含着整个宇宙的所有信息。它其后的膨胀,什么时候在哪里会形成什么样的星云,什么时候在哪里会有什么样的太阳、地球,什么时候在哪里的原子、分子会组合成一个叫做“人”的生物,会如何行动、“思考”……

也就是说,按照拉普拉斯的决定论,所谓人的自主意识并不可能存在。所有一切的一切,都在大约100多亿年前那颗宇宙蛋中命中注定了。

勒梅特当时就意识到这个问题的存在,但他没有像爱丁顿那样“不寒而栗”。他进一步指出,就在几年前,海森堡(Werner Heisenberg)刚刚在量子力学中提出了著名的“测不准原理”(uncertainty principle,更准确地应该翻译为“不确定原理”)。在量子条件下,我们不可能完全掌握某个时刻世界的所有状态信息,任何时刻的宇宙都带有着内在的不确定性。因此,即使是从一个最简单的宇宙蛋演化出来的宇宙,也会带有很强的随机性——人类的自主意识也因此有了可能。

量子力学也是20世纪初的新科学,当时的研究对象集中于原子、电子这些尺度极其微小的粒子,似乎与尺度最大的宏观宇宙风马牛不相及。但在勒梅特的眼中,浩瀚宇宙也不过来自一颗原始原子。

更进一步,勒梅特指出这颗原子本身可能就是来自“真空”。因为在量子力学中,真空并不是一如既往的空空如也,也带有内在不确定性,会随机地发生粒子的产生和湮没。宇宙蛋也许就是这样一个“无中生有”的随机产物。

就这样,量子理论进入了宇宙学领域,实现与广义相对论的第一次握手。


爱因斯坦显然很喜欢冬天的南加州。1932年12月,他连续第三年来到加州理工学院访问。这一次,密里根也同时邀请了正在美国天主教大学里担任访问教授的勒梅特。这是爱因斯坦与勒梅特的第三次见面。勒梅特这时也已经成为一个世界著名的科学家。因为他的牧师、科学家双重身份,他在美国的科学活动经常得到好奇媒体的追逐。这两位宇宙学巨匠的交流更是当时记者趋之如鹜的新闻。

还是在师从沙普利攻读博士时,勒梅特在麻省理工学院接触到最早期的电子计算机(而不是哈佛“后宫”的人肉“计算机”)。他当时便试图使用这一新兴技术研究造父变星的周期来源。这时,他又与麻省理工学院的瓦拉塔(Manuel Vallarta)合作,用计算机模拟研究宇宙射线,通过宇宙射线强度与地球纬度的关系证明了宇宙射线由带电粒子组成,其在大气层中的轨迹受地磁场影响而集中在地球两极。

在他们的论文中,勒梅特特意指出宇宙射线的来源可能相当古老,其中也许会含有当初“宇宙蛋”爆发时的成分。那些遗留至今的辐射的波长会随着宇宙的膨胀不断地变长。

当勒梅特在洛杉矶讲解这个新成果时,曾经觉得勒梅特物理很糟糕的爱因斯坦也叹为观止,当场起立鼓掌,赞曰:这是我听到过的最漂亮、最令人满意的理论。

就在爱因斯坦与勒梅特在南加州相谈甚欢时,外面的世界在发生着天翻地覆的变化。希特勒(Adolf Hitler)在德国上任首相,整个国家很快陷入纳粹恐怖之中。作为犹太人,爱因斯坦首当其冲。在他回欧洲的旅途中,他的住所遭到纳粹党徒搜查,他被怀疑为参与走私武器的阴谋活动。爱因斯坦一到欧洲便在比利时下船滞留,终身再也没有踏足德国土地。

1933年10月17日,爱因斯坦终于来到美国定居,在新建立的普林斯顿高等研究院度过他的下半生。在那里,他研究了广义相对论中的引力波、量子理论的完备性等重大物理问题,但更专注于他理想中的“统一场论”,逐渐与物理学主流脱节。终其余生,他没有再回到宇宙学领域,也没有再度访问南加州。

短短几年后,第二次世界大战(二战)爆发。世界各地的科学家不再有自己平静的书桌,也不可能再倾心于那满天的星斗、思考宇宙的来源、意义。他们有更迫切的任务。如果不是在逃亡的话,他们以各种方式投入国防大业,现实地报效自己(各自)的祖国。

二战不仅是士兵、武器的厮杀,也是科技的较量。在雷达、弹道等军事科技上,物理学家做出了卓越的贡献。而最著名的莫过于以原子核物理为基础的原子弹的发明、建造和使用,加快了战争的结束。

而未曾料到的是,也正是战争中发展的核物理为宇宙学的研究带来了下一个重大突破。


(待续)



Monday, May 27, 2019

宇宙膨胀背后的故事(十一):爱因斯坦错在哪里?

1930年1月10日,英国王家天文学会的例会讨论了哈勃的新发现。正在伦敦访问的德西特应邀介绍了最新进展,他坦白地承认自己的宇宙模型中虽然存在红移,却无法解释这个与距离成正比的规律。爱丁顿觉得当时理论界的情形颇为滑稽:“爱因斯坦的宇宙中有物质没运动,德西特的却有运动而没物质。”(“Einstein's universe contains matter but no motion and de Sitter's contains motion but no matter.”)

那时候勒梅特已经证明了德西特的模型并不真的是一个静止的宇宙。因为坐标系的问题,在那个宇宙中任何地点放一个有质量的物体,该物体都会加速向边缘飞去。那便是模型中红移的来源,并非物理实际。因此,爱丁顿以双关语讥讽德西特道:你那模型“没有物质,所以无关紧要”(“as there isn't any matter in it that does not matter.”)

难道就不能有一个既有质量又有运动(红移)的宇宙模型吗?爱丁顿近乎绝望地问道。

那次会议的记录照例发表在学会的通讯上,几个月后传到比利时的勒梅特手中。勒梅特看到后哭笑不得,当即写信给爱丁顿,提醒前导师他在三年前就已经寄送过一篇论文。那篇论文提出的宇宙模型正是既有物质又有运动,并完美地推导出星云的速度距离关系——比哈勃的发现还早了两年!

爱丁顿收到信大为震惊,立刻翻阅故纸堆,找出了那篇论文。不知道当初是没注意还是没看懂,他对那论文毫无印象。出于歉疚,爱丁顿此后花大功夫补救他的疏忽,宣传他昔日弟子的成就。

出于爱丁顿的安排,勒梅特1927年那篇法语论文的英文版于1931年3月在王家天文学会月刊上重新发表。这个三年后的版本虽然大致保持了原貌,也有一些改动。勒梅特补充引用了他原来不知道的弗里德曼论文,老老实实地指出他的理论是弗里德曼的进一步推广。但更突出的是,他省略了关于观测数据中星云的速度与距离成正比关系的整个一节。实诚的勒梅特觉得哈勃这时已经发表了更新、更可靠的数据,没有必要再重炒旧饭。

众多的天文学家只是通过这个英文版才接触到勒梅特的理论。他们不知道有这个删节,因此依旧理所当然地认为哈勃是发现该关系——“哈勃定律”——的第一人。(后期历史学家曾猜测哈勃在翻译过程中插过手以维护他的优先权。这说法并不成立。迟至2018年10月底,国际天文学会全体会员投票,建议将“哈勃定律”正式改名为“哈勃-勒梅特定律”。)

但勒梅特迟到的论文还是有它深刻的影响。作为观测天文学家,哈勃只是从数据中总结了红移的规律。他没有也无力做出进一步的解释。勒梅特正相反,他的规律是从广义相对论中直接推导出来的(然后才找到实际观测数据证实),对数据有一个革命性的诠释:我们看到星云巨大的红移,不是来自星云本身的速度,而是宇宙空间的膨胀。星云只是被动地由所处的空间带着走,就像流动着水面上的浮漂,或者膨胀气球表面上画着的斑点。

即使是熟谙相对论的物理学家一时也无法接受如此怪异的观念。在洛杉矶,到哈勃的家里来的不再只是好莱坞的明星。每两星期,一群从威尔逊山和附近加州理工学院来的天文学家、物理学家甚至数学家也会定期聚集,围着一块小黑板抽烟、争论,嘟囔着很多格蕾丝不懂的名词术语。作为主妇,她默默地为他们准备好酒品、饮料和三明治。

这些人中有的认为星云是在不变的空间中做随机运动,只是碰巧速度大的星云现在已经跑得离我们很远,才让我们有越远的星云速度越快的错觉;有人则觉得远方的星光来到我们地球的一路上大概经历了更多的散射干扰、逐渐失去能量才表现出红移……

哈勃静静地听着。他无法加入这类理论性的探讨,只是集中注意力试图听到某种可以通过观测数据来确证某个理论是否正确的可能性——那才会是他的用武之地。在内心里,他也无法理解勒梅特的空间膨胀理论。终其一生,他一直倾向于相信他看到的是星云本身——而不是空间——的运动。


1930年11月,爱因斯坦与他的第二任妻子、表姐加堂姐(再从姐)艾尔莎(Elsa Einstein)及秘书、助手一行四人乘坐一艘由一战时的战舰改装的豪华邮轮渡过大西洋来到美国。这是他第二次访问美国。但这次他们只在纽约稍事停留,便继续乘船南下,循通航仅十来年的巴拿马运河进入太平洋,然后又顺海岸北上,于那年12月31日到达圣地亚哥。在长达四小时的盛大欢迎仪式后,爱因斯坦第一次踏足美国西海岸。

他是应加州理工学院的邀请来这里进行为期两个月的学术访问。除了阳光、海滩,这里有他慕名的物理学家迈克尔逊和密里根。自然,他也对邻近威尔逊山上正在颠覆他的宇宙论的哈勃满怀好奇。
1931年,爱因斯坦(右三)参观威尔逊山天文台图书馆。左一、左二分别为胡马森和哈勃;左四是迈克尔逊。

爱因斯坦当时也才51岁,有了为人熟悉的那一头飘逸的乱发,只是还没有完全变白。但他已经是世界上首屈一指的物理学家、科学家,大众媒体追逐的明星。他观看了当地的新年玫瑰游行,欣赏了在德国被禁的反战电影《西线无战事》(All Quiet on the Western Front),还出席了卓别林《城市之光》(City Lights)的首映式。当他们穿着正式的燕尾礼服,在观众掌声中一起步入影院时,卓别林感慨道,“他们欢呼我是因为他们明白我;他们欢呼你,却是因为没有人能懂你。”

哈勃的夫人格蕾丝义不容辞地担任起接待爱因斯坦的职责。一次她开车带爱因斯坦出门时,爱因斯坦专门对她夸道,“你丈夫的工作非常漂亮,他很能干。”

1931年1月29日,爱因斯坦与哈勃一起乘车登上威尔逊山。好莱坞的新生代导演卡普拉(Frank Capra)亲自掌镜,为他们全程拍摄纪录片。在山上,爱因斯坦像孩子一般对各个庞大的望远镜爱不释手、流连忘返。他们最后才来到胡克望远镜跟前。当工作人员无比自豪地介绍这个大家伙如何能发现宇宙的大小和状态时,倒是艾尔莎淡定地评论:我丈夫只需要一张旧信封的背面就够了。
1931年,爱因斯坦(左)在威尔逊天文台观赏胡克望远镜。哈勃(中)和天文台台长亚当斯(Walter Adams)陪同。

几天后,爱因斯坦又在洛杉矶为当地的天文学家、物理学家举办了一个学术讲座。他开门见山地承认,基于哈勃等人的发现,宇宙大小不恒定,的确是在膨胀。他解释说,14年前他在广义相对论场方程中引进了那个“宇宙常数”项只有一个目的,就是要找一个恒定不变的宇宙解。现在看来是画蛇添足,完全没有必要。

于是,哈勃在媒体上又获得一个桂冠:“让爱因斯坦改变了主意的人”。


几乎所有科学历史的书籍、文章都会提到爱因斯坦曾抱怨引入宇宙常数是他“一辈子最大的失误”(biggest blunder of his life)。不少作者更一厢情愿地设想如果爱因斯坦当初没有仓促行事,而是更相信他自己的方程并预测宇宙膨胀,该会是多么地辉煌。

这两个说法都没有证据支持。

前一个说法来自宇宙学家、科普作家伽莫夫(George Gamow)的描述,没有任何旁证。天体物理学家、作家利维奥(Mario Livio)为这个“最大的失误”来源做了细致的调查和分析,可以肯定那是伽莫夫出于戏剧性的凭空编造。

爱因斯坦在他那篇1917年原始论文中便明确说明宇宙常数项只是为得到一个静止的宇宙而引入,其前提是广义相对论场方程允许这样一个项的存在,因此有可能是真实的。他的确一直为此惴惴不安,只是因为这个项没有在场方程中自然出现,需要人为引入,破坏了他所追求的美学意义上的简单性。当静止宇宙这个要求不再必要时,爱因斯坦轻易地就舍弃了这个多此一举,也并没有觉得当初的引入曾是多大的失误。

的确,爱因斯坦之所以引进宇宙常数项,并不是为了遏止或防止宇宙膨胀,而是恰恰相反。他看到的是他那个宇宙模型会在引力影响下塌缩,因此需要一个平衡因素。那是一个从牛顿开始就已经意识到的老问题,与后来勒梅特发现的宇宙膨胀没有关系。即使爱因斯坦对他自己的理论充满信心,他最多只会无奈地指出他的广义相对论宇宙与牛顿力学的宇宙一样最后会塌缩到一个点。

因此,即使是在弗里德曼发现爱因斯坦的方程中包含宇宙大小可以随时间有不同的变化方式——既可以塌缩也可以膨胀——时,爱因斯坦也没有“恍然大悟”。他先验地认定弗里德曼的推导出了错,被纠正后依旧不以为然,觉得弗里德曼的解“不具备物理意义”。

及至勒梅特给出更详细的数学理论,并辅以实际观测的光谱数据来证明宇宙的膨胀时,爱因斯坦依然只是学霸式地将之贬为“物理直觉糟糕透顶”。

其实,在这个问题上物理直觉糟糕的恰恰是爱因斯坦自己。


宇宙在大尺度上是恒定、静止的,是人类千年的直观经验。在确凿的光谱红移数据出现之前,以此作为宇宙理论的前提几乎是理所当然。然而,爱因斯坦的错误却并不止于此。

爱因斯坦引入的宇宙常数项是为了抵消引力作用、避免塌缩。因此,这个常数的数值必须非常合适。数值如果太小,不足以抵挡引力,宇宙还是会塌缩;如果太大,则会超越引力,宇宙就会膨胀。爱因斯坦仅仅在数学上确定可以有一个恰恰合适的数值存在,便大功告成地宣布发现了他的(静止)宇宙模型。

理论物理学家温伯格(Steven Weinberg)在他著名的《最初三分钟》科普书中给出一个形象的比喻:如果我们在地球上发射火箭,火箭或者有足够的能量逃离地球,或者最终耗尽燃料被地球引力拉回来坠毁。爱因斯坦式的静态宇宙正好介于逃离(膨胀)和落回(塌缩)之间,无异于是一个停留在半空中正好不上不下的火箭。那火箭的推力必须百分之百地恰到好处。

那么,有没有可能我们这个宇宙恰恰有一个如此准确的宇宙常数值,不偏不倚地抵消引力的作用呢?这不是完全没有可能——毕竟我们并不知道宇宙是怎么来的,也许我们的运气异常地好。然而,这样的平衡还必须是百分之百地准确。因为只要有极其微弱的偏差,宇宙都会或者膨胀或者塌缩,不会保持着静止状态。

也就是说,在数学上我们可以找出一个将鸡蛋平衡在一根针的针尖上静止不动的解。但这属于不稳定的解。因为我们知道,只要稍有偏差,鸡蛋就会倒下。这种解不可能在现实世界中出现。

爱丁顿是在仔细研读被他忽视过的勒梅特论文时才意识到这一点。勒梅特也已经证明了(但没有明确表述出来)爱因斯坦所给出的静止宇宙解正是这么一个不稳定的解——“不具备物理意义”。


加州理工学院竭尽全力,邀请爱因斯坦每年冬天前来学术访问。爱因斯坦显然也喜欢这里的阳光海滩。一年之后,爱因斯坦再次来到南加州。这一次,德西特也来了。在此之前,曾经对勒梅特不屑一顾的德西特研读了勒梅特的论文后也几乎立刻就转变了态度,大赞勒梅特的理论“高妙”。
爱因斯坦(左)与德西特在加州理工学院讨论他们的宇宙模型。

他们俩一番切磋后,合写了一篇仅2页长的论文,发表在美国科学院院刊上。这篇论文没有什么新思想,不过重复了弗里德曼、勒梅特和其他理论物理学家的最新进展。如果换上别的作者,估计不可能通过同行评议。但正是因为作者是爱因斯坦和德西特——宇宙模型的两位开山鼻祖——这篇论文才有了特殊的意义:它标志着两人都正式地放弃了各自的宇宙模型,认同了弗里德曼和勒梅特的宇宙。

这篇论文发表后不久,爱因斯坦去伦敦拜访了爱丁顿。爱丁顿好奇地问爱因斯坦为什么还要发表那么一篇论文,爱因斯坦答曰,我的确并不觉得有多么重要,但德西特很把它当一回事。爱因斯坦走后,爱丁顿收到德西特的一封来信。信中说,你肯定看到了我与爱因斯坦的论文。我不觉得那里面的结果有什么重要性,但爱因斯坦似乎觉得很重要。

两位泰斗“投降”后,广义相对论的宇宙模型逐渐在更多的理论学家的参与和发展下定型,成为所谓的“弗里德曼-勒梅特-罗伯森-沃尔克度规”(Friedmann–Lemaitre–Robertson–Walker metric)。(没错,这里的罗伯森就是那个几年后不动声色地帮助爱因斯坦改正了他在引力波推导中错误的那个罗伯森。)

颇为讽刺的是,因为1932年那篇论文,这个新模型也经常被称为“爱因斯坦-德西特宇宙”。


(待续)



Wednesday, May 15, 2019

宇宙膨胀背后的故事(之十):哈勃的“新”发现

冷不丁被哈勃的一封信颠覆了宇宙观的沙普利没有再纠缠两人以往的过节,很快全盘接受了哈勃有坚实数据支持的新世界。作为哈佛天文台台长,沙普利不再有在前沿观测、科研的机会或实力,已经在蜕化为端坐在他那张特制办公桌后面的行政人员。阅读八角桌上越来越多的论文和报告,他意识到天文名词需要正本清源,明确那几个历史悠久、一直都在被当作同义词而混用着的基本概念:“银河”(Milky Way)、“星系”(galaxy)、“宇宙”(universe)。

他提议以“银河”专指我们所在的“星系”,银河只是“宇宙”中无数的星系之一。在银河之外,我们看到的每一个星云都是一个或多个与银河类似的星系。所有的星系的整体是我们的“宇宙”。这样,“宇宙”再度恢复了原有的意义:独一无二、包罗万象的宇宙。

那个自康德开始的“岛屿宇宙”概念则应该被摒弃——星云不是个体的宇宙,只是宇宙中的星系。比如,“仙女星云”(Andromeda Nebula)应重新命名为“仙女星系”(Andromeda Galaxy)。

哈勃却依然不愿意附和沙普利。他固执地坚持“星系”这个词的本源含义——在古希腊它与“银河”同样来自“奶”的神话,故只能是银河的同义词。终其一生,他顽固地把银河外的星云别扭地称之为“星系外星云”(extragalactic nebulae)。(勒梅特1927年的那篇论文也采用了这个称呼。)

直到哈勃逝世之后,天文界才一致性地采纳了沙普利的提议,成为我们今天的标准语言。


1914年斯里弗在西北大学会议上报告星云光谱时,刚开始研究生学业不久的哈勃也在听众席中。哈勃在那次会议上被选为美国天文学会会员,并很可能就是因为斯里弗的演讲而与星云结下终身之缘。在他参军上战场前匆匆而就的那篇“暗淡星云”毕业论文中,他颇遗憾地表示,要看清楚星云,必须有比他当时所用的更强大的望远镜。

十年后,如愿以偿地在威尔逊山用最强大的胡克望远镜找到仙女星云中的造父变星、给沙普利寄出那封信之后,哈勃倒忙里偷闲地结婚度蜜月去了。
1924年,新婚的哈勃和他的妻子格蕾丝。

他的新娘格蕾丝(Grace Hubble)是洛杉矶银行家女儿,为他带来一笔不小的财富。哈勃九泉之下的老父亲终于可以瞑目,不用再担心陷于追星梦的儿子无法养家糊口。只是婚礼上没有出现哈勃的亲人。搬到西海岸后,他与中西部乡下的家庭切断了联系。在其后与哈勃30年的共同生活中,格蕾丝从来都没有见过他的任何家人。

威尔逊山下的好莱坞电影城这时进入第一个黄金时代。身材高大仪表堂堂衣着考究一幅英国绅士派头的哈勃如鱼得水。格蕾丝尤其善于社交,他们的爱巢很快成为热门的聚会场所。包括卓别林(Charlie Chaplin)等的一流影星,以及剧作家、导演,都是家中常客。这个圈子里的人觉得哈勃作为科学家实在是浪费人才。他们赞誉他为希腊美神阿多尼斯(Adonis),比当红男星盖博(Clark Gable)有过之而无不及。

在这个娱乐小圈子之外,哈勃的名声也正如日方生。罗素在1925年元旦宣读他的论文之后,媒体以各种耸人听闻的标题、哗众取宠的笔调渲染他所发现的“千万个的宇宙”、“天堂的新奇景”……(当然,他的论文也正如罗素预测,赢得了美国天文学会的年度大奖。)哈勃这个名字开始变得家喻户晓。

在威尔逊山上,哈勃少校却依然因为他的做派而形单影只。在外的名声只是让他与其他同事的矛盾愈加尖锐。在山上,最有人缘的是另一个性格、为人等各方面都与哈勃截然相反的职员。


胡马森(Milton Humason)在学历显赫的天文学群体中是一个绝无仅有的异类。他也是出生于中西部的乡下,但幼年时并没有哪个长辈送过他天文望远镜。他父亲教给他的是钓鱼、打猎等户外生活的技能和乐趣。他还年少时随家庭搬到洛杉矶,很快就与这里更好的学习环境格格不入。好在每年夏天,刚刚十来岁的胡马森可以参加在威尔逊山上的夏令营。那时候还没有天文台。在荒山上他钓鱼、射击、攀爬,尽情地享受自然,乐不思蜀。终于,在高中第一年时,他说服父母准许他退学,跑到山上的一个小旅馆当小伙计,过起自食其力、自由自在的日子。

海尔也正是在那期间选中了威尔逊山修建天文台,开始了艰苦的基建工程。少年的胡马森看着那些在山路上频繁运送物资的骡马队很眼馋,也看到了机会,便跟人学会了这一技能,成为驾驭骡马的高手。两年后,当天文台冒险搬运1.5米口径望远镜上山时,正是17岁的胡马森率领骡马队协助载重卡车一步一步地挪过山上崎岖、狭窄的惊险小道。
1910年,不到20岁的胡马森在威尔逊山上。

几年下来,他天真活泼、自来熟的个性让他成为山上山下所有人的朋友。

只是好景不长,他与天文台首席工程师的女儿坠入了情网。为了赢得未来丈人的首肯,胡马森不得不结束在山上的无忧无虑,到洛杉矶市郊管理起家族的农场果园——有前途的体面工作。又不到几年,小两口不仅有了下一代,还存下钱置买了自己的农场,成为当地殷实富足的成功人士。

偏偏老丈人又随口透露山上已初具规模的天文台要雇佣一个清洁工,再度勾起胡马森的浪漫情怀。他们匪夷所思地变卖了农场,搬进山上小木屋,成为天文台的最低端人口。胡马森担负着洗刷天文学家夜以继日冲洗底片的各种化学试剂、清扫垃圾等重任,还要在风暴后清障铲雪,保证山上小道的畅通。闲暇之余,他与四岁的儿子在山溪中钓鱼、林间漫步野餐打雪仗,其乐融融。

他乐此不疲,主要还是因为这份工作带有一项“福利”:晚上可以自愿去给天文学家打下手。从跑上跑下递送物件到按照指定的坐标预备望远镜的朝向、置换观测箱、更换底片,以及在观测人员休息的间隙代替监控望远镜……他就这样一点点地学会了天文观测的基本技能。对他来说,这并不比少年时学会驾驭骡马难多少。

他的勤勉和热心赢得了天文台中每一个人的喜爱和信任。他还曾冒着生命危险独自追踪、猎杀了一只在附近惹是生非的山狮,更令他声名大噪。沙普利称他为不可多得的“文艺复兴式人物”(Renaissance man)。慧眼识珠的天文学家私下指导、培训他进行独立的天文观测,并与他共同署名发表论文。

1919年,年方28岁的胡马森被海尔破格聘任为正式的天文职员,完成了从骡马手、清洁工到科学家的飞跃。在现代天文台中,这很可能是前无古人后无来者:胡马森一直连高中学历都不具备。(1950年胡马森快退休时,瑞典的隆德大学因他对天文学的贡献授予他荣誉博士学位。那时他已经发表近100篇科学论文,也是英国王家天文学会会员。)

不过,即使是对他极为欣赏的沙普利也有看走眼的时候。在为沙普利当助手时,胡马森注意到沙普利拍摄的星云照片上有个别亮度的变化,曾特意标出提醒沙普利注意。当时还深陷在“大银河”思维中的沙普利很不以为然,训导了胡马森一番造父变星如何不可能在星云中出现的大道理后便顺手擦掉了他做的记号。几年后,胡马森看到哈勃正是通过与那几张照片的比较而发现了仙女星云中的造父变星,一举成名。(阴错阳差,细致的胡马森后来也曾错过一次在自己的照片中发现冥王星的良机。)


哈勃其实只比胡马森大不到2年。拥有博士学位、留过洋的哈勃开始没有怎么注意过这个没有学历的小职员。等到几年后哈勃意识到他需要胡马森的帮助时,胡马森已经与他人合作发表了多篇论文,并在观测、拍摄暗淡的星云上有了自己的建树。

1928年夏天,哈勃已经是国际天文联合会中的星云委员会代理主席。他参加了在荷兰举行的年会,见到了著名的理论天文学家德西特。德西特因为自己的宇宙模型力促哈勃关注星云的光谱红移,唤起了哈勃当年听取的斯里弗报告时的感觉。斯里弗那时已经成功测出了40多个星云的光谱,也抵达了他在洛威尔天文台的设备极限。要再提供柯蒂斯期望的“更多的数据”,非威尔逊山的胡克望远镜莫属。

回国后,哈勃决定集中精力研究光谱。胡马森的专注、仔细和耐心正是长时间追踪捕捉遥远星云那微弱的光亮所不可或缺的天赋。于是他难得地放下架子,向胡马森提议合作。胡马森可以承担那夜以继夜地连续曝光拍摄遥远暗淡的星云光谱的苦差事,让哈勃可以有更多的时间寻找这些星云中的造父变星以估算距离、并寻求它们之间的联系。胡马森虽然并不十分情愿,却也无力拒绝。

星云之所以称之为星云,就是因为它们的光亮过于微弱无法看清它们的本像。罗斯伯爵用利维坦看到它们的涡旋形状,哈勃用胡克望远镜终于发现了其中的造父变星。但这些还只是看距离比较近的星云。当哈勃把视线转向更为模糊的遥远星云时,他发现即使是威力强大的胡克望远镜也无能为力。更远的星云中无法辨认个体星星,更遑论造父变星。

当然他也不是束手无策。在勒维特的尺子不好用之后,哈勃可以采用其它方法:假设每个星云中最亮的星的内在亮度会差不多,他利用已知距离的星云中最亮的星的视觉亮度与未知距离的星云中最亮的星相比,可以大致估算出距离上的差别。再往远处的星云完全辨认不出个体星星,他又假设星云整体的平均亮度可能也差不多,用已知距离星云的平均亮度与未知距离的星云相比,估计更远的距离。

这个没有办法的办法不是哈勃的发明,沙普利在研究星团的距离——他的大银河宇宙的大小——时,也采用过相似的手法。在天文学上这叫做“宇宙距离阶梯”(cosmic distance ladder):在一种测量方法不再适用时,用它所测得的最远距离做基准转换到另一种可能适用的方法。哈勃所用的从视差到造父变星到最亮的恒星到平均亮度只是这个阶梯的一种,天文学中还有其它可用作距离阶梯的测量手段可以综合、对比使用。


1929年3月,《美国科学院院刊》同时发表了两篇来自威尔逊山的论文。其一是哈勃的《星系外星云距离与径向速度之间的关系》(A Relation between Distance and Radial Velocity among Extra-galactic Nebulae)。在这篇文章中,哈勃揭示了他发现的规律:星云的径向速度与它们的距离成正比,并提供了一目了然的数据图。
哈勃在1929年发表的星云速度(纵坐标)与距离(横坐标)关系图。其中实心点、实线与空心点、虚线分别代表两种不同计算方法的结果,二者相差不大。

在这篇论文中,哈勃采用的其实只是斯里弗早已测出的光谱数据(但没有在论文中交待来源),因此他的“新”发现与勒梅特两年前已经发表过的结论并无二致。但引人注目的是紧跟着的另一篇、由胡马森单独署名的论文:《NGC7619 的巨大径向速度》(The Large Radial Velocity OF NGC 7619)。胡马森的这篇论文简短得不到一页,只报道了一个数据点。在这简单文字的背后,却是一番不足以外人道的辛劳。

在答应与哈勃合作后,胡马森便潜心苦干,极力拍摄那个暗淡星云的光谱。经过一系列的屡败屡战,他终于得到一张可用的光谱照片,发现那个星云的速度高达每秒3800公里,比沙普利曾经看到的最高速度又高了两倍多。

当胡马森拿着这张底片敲开哈勃办公室的门时,一向矜持端庄的哈勃也掩饰不住兴奋,惊动了整个天文台。哈勃早已估算好这个星云的距离,胡马森的速度正是按照正比规律所预测的数值,把他那张图上的直线延长了整整两倍!

哈勃对他这个合作者还不那么放心,既没有合写论文也没有直接采纳这个重要的数据,而是在同时发表的两篇论文中互相引用说明。这样,他既能得到这个数据的支持又不需要承担万一出错的责任。

测量这一个数据点的辛劳和哈勃的心计已经让胡马森身心俱疲,发誓退出、不再继续测量星云光谱。只是形势比人强,他们这一历史性突破的意义早已远远超过个人的恩怨。威尔逊天文台不顾其他天文学家的反对,将胡克望远镜的观测时间几乎完全交给胡马森一个人使用,并专门拨款为他购买了最先进的照相机。

不久,他又成功地拍摄到更远的星云:距离约1亿光年之巨,径向速度高达每秒2万公里——光速的百分之六。连哈勃这时也深感佩服:“胡克望远镜终于在你手中物尽其用了。”("Now you are beginning to use the 100-inch the way it should be used.")
不同距离的星云(自上而下越来越远)光谱比较,可以看到被标识为“KH”的钙谱线越来越往右边(红色)移动。

当然,更重要的是,那么遥远的距离,那么巨大的速度,依然符合着速度与距离的正比关系。至此,这个关系的普适性已经毋庸置疑。

哈勃早已奠定的名声保证了他的发现不会像勒梅特的那样被忽视。在发现宇宙真正的尺度之后仅仅四年,哈勃又发现了宇宙之不可思议的运动规律。这后一个历史性的贡献立刻被命名为“哈勃定律”(Hubble's Law)。其定律中速度与距离正比关系的系数也相应地被叫做“哈勃常数”(Hubble's Constant)。


(待续)