Tuesday, February 6, 2018

捕捉引力波背后的故事(之四):聆听天籁之音的韦斯

当韦伯探测引力波的冲击波传到麻省理工学院(MIT)时,那里的物理教授们发现他们有点麻烦。

麻省理工学院在第二次世界大战期间专注于雷达技术,做出了卓越的贡献。他们因此持续地获得来自美国军方的大量科研资助。二战之后,物理以及与物理有关的系科急剧膨胀,欣欣向荣。这时候,他们突然意识到,系里却没有一个研究广义相对论的教授。他们只好矮子里拔将军,指派年轻的助理教授韦斯(Rainer Weiss)开一门广义相对论的研究生课程。

韦斯1932年出生于德国。父亲是一个家境富足、笃信共产主义的犹太医生,母亲是演员。两人邂逅的一夜情有了韦斯,然后才不得不奉子成婚。韦斯两岁时他们因为纳粹的迫害不得不出逃,辗转几年来到美国,于1939年定居纽约市。那里正聚集着大量和他们一样刚刚“下船”的欧洲移民,捎来了对古典交响乐的一往情深。还是孩子的韦斯从他们身上既攫取了他的人生擎爱,也看到了商机。那时调频广播刚开始时兴,小小的收音机无法发挥其魅力。韦斯成为第一代音响发烧友,收集电子元件自己设计、制作电路将调频信号高保真放大,用高功率大喇叭播放。

有一次,一家电影院着火,废墟中有20来个大型剧院用扬声器。韦斯把它们一个个扛回家,接上自己的电路,给朋友们播放纽约爱乐乐团的演出,效果惊人。

他没能发大财,但有了一个让更多的人更容易地听到高品质的美乐的志向。

他注意到播放虫胶唱片时总会有一点“嘶嘶”的杂音没法消除。为了解决这个难题和发展他的事业,韦斯上大学时选择了麻省理工学院。不料,大学里让他着迷的不再是电器中的音响,而是一个姑娘手指下流出的美妙钢琴声。他神魂颠倒地追随女孩去了芝加哥,可还是眼睁睁地看着她另攀了高枝。不过他也不是一无所获,从她那学会了弹钢琴。在那之后六十多年,每天晚上弹奏一小时钢琴成了韦斯一辈子的功课。

铩羽而归,他发现麻省理工学院已经将他除名。喜欢动手、捣腾的他便走向物理实验室,一间一间地打听他们是否需要帮手。扎卡瑞亚斯(Jerrold Zacharias)教授收留了他,让他打了两年小工,然后推荐他重新入学。这回韦斯老实了,不仅上完了大学,还接着一口气在扎卡瑞亚斯的指导下拿了个物理博士学位。

(韦斯后来自己当教授期间也收留过几个大学期间辍学的“坏小子”。其中两个,修梅克(David Shoemaker)和佩奇(Lyman Page),现在分别是麻省理工学院和普林斯顿大学的杰出科学家。修梅克后来还成为探测引力波国际协作项目的官方发言人。)

他的博士课题是刚萌芽的铯原子钟技术。用这种异常精确的钟来实际测量爱因斯坦预言的引力场中的“钟慢”效应那时很时髦。他对物理实验中的精密测量产生了浓厚的兴趣,也许这与他当初做高保真电路时的所需要的精益求精一脉相承。

毕业后,韦斯在普林斯顿大学跟狄克(Robert Dicke)教授做了两年博士后。狄克那时一边在寻找引力波,一边正准备做探测宇宙微波背景辐射的实验,不料却被贝尔实验室的那两位幸运儿抢了先。1964年韦斯回到麻省理工学院任职,有了自己的实验室。他也计划同时进行引力波和宇宙背景辐射方面研究。很快,韦伯“发现”了引力波,于是他就顺理成章地被抓了差,去开设广义相对论课程。


年轻的韦斯不敢坦白他其实从没接触过广义相对论,只好硬着头皮开了课,自己边学边教,现买现卖。他是擅长动手做实验的,对这理论里复杂的数学最为头疼,只好尽量地把它当作一堂实验课来讲,试图用各种模型、假想实验来直观地解释广义相对论,倒也别具风味。

1970年代的韦斯在麻省理工学院实验室里的工作照。他正在组装一个红外辐射探测器。

学生要求他讲讲韦伯的实验。韦斯不得不承认他自己对韦伯棒的机制也摸不着头脑。他在课堂上与学生一起探讨了爱因斯坦的原始论文,然后干脆布置了一个作业,设计一个与韦伯不同的测量引力波的方法。在这个过程中,他有了自己的想法。

韦伯在费曼的“粘珠”假想实验中看到的是那根棍子,把它作为“琴弦”寻找引力波引发的共振。韦斯则相反,他着眼于那颗珠子,要直接测量珠子因为引力波的运动。当然,这个运动——如果有的话——幅度会极其微小,又没有共振那样的放大机制,如何测量呢?韦伯知道,可以用光干涉的方式来放大细微的距离变化。

1887年,迈克尔逊(Albert Michelson)和莫雷(Edward Morley)设计了一个干涉仪,将一束光用半透镜分成两份,分别送往垂直的两个方向,然后用镜子反射回来重新汇聚。如果二者略有差异,光的波动性会导致聚合的光产生干涉条纹,这样可以测量两个方向上的差别。

在那个试验中,两个方向的光束走着完全相同的距离。他们想找的是两个方向上光速的区别。那时候的物理学家假设光是在一种叫做“以太”的媒体中传播。因为地球也在以太中运动,经典物理推论顺着地球运动方向与垂直方向上光的速度应该有差异。这样干涉仪中两个光束返回时的时间也会略有差异。这个微小差异可以从干涉条纹中测出。

迈克尔逊和莫雷没能找到任何差异。也就是说,光的速度没有受到地球运动的影响。这个结果否定了以太的存在,确认了麦克斯韦尔方程组中光速的绝对性。迈克尔逊因此赢得1907年诺贝尔物理奖,是第一个获得科学类诺贝尔奖的美国人。

韦斯认为,既然现在已经知道光速是恒定的,同样的这个实验就可以用来寻找不同方向上微小的距离差异。干涉仪两个方向终点处把光反射回来的镜子便是费曼的珠子,它们因为引力波的细微波动会导致两条光路距离的微小差异。这个差异可以同样地出现在干涉条纹中。

上他的课的几个研究生对这个课题非常感兴趣,他们不满足于在堂上讨论,而是与韦斯在晚上碰头,加班加点继续研究。他们搭建了一个臂长1.5米的干涉仪用以研究引力波到来时如何探测的模型。这个装置比当年迈克尔逊和莫雷用的的那个大不了多少,不同的是他们现在可以用激光作光源,先进得多。晚上干活也有好处:他们实验室就在地铁线边上。一旦有车经过,他们这个简陋的设备就被震荡得一塌糊涂。只能等到末班车开过、夜深人静后才能试验。

一晃两三年就过去了。韦斯和他那些换了好几茬的小伙伴们依然乐在其中,解决了一系列如何应对环境影响的难题。系里的其他教授们则都不知道他在搞什么名堂。一位老教授好心地提醒韦斯,如果还没有论文发表,他眼看着就不可能得到终身教授职位。韦斯这时候还没有能够正式发表的成果,只好把他这几年的心得、笔记整理一下,写成一篇材料发表在学校内部的季度报告上。


韦斯1972年发表的这篇内部报告分两部分,前一半是用高空气球测量新发现的宇宙微波背景辐射,后半部是引力波干涉仪的设计和研究。他当时把它叫做“引力天线”(Gravitational Antenna)。这是他的干涉仪设计第一次面世,但因为只是一个学校内部报告,很少人知晓。

韦斯1972年中麻省理工学院内部发表的引力波干涉仪设计草图。

费曼1957年在教堂山解释“粘珠论”用的示意图【见本系列之二】中的“棍子”呈十字交叉,每个方向上各有一个“珠子”。韦斯的干涉仪设计图则可以看作是费曼那个图左上角的四分之一部分,在左边和上方各有一个弧形的镜子反射激光。这两个镜子便是费曼的珠子。镜子和图中心的激光半透镜、测量仪器等之间构成两条“长臂”,相当于费曼的棍子。当然,韦斯的长臂只是激光的路径,不是实物。他的棍子其实是悬挂镜子的支架、天花板和固定在地面的光源、半透镜、测量仪器以及与它们相连的建筑、地球等等的整体。也就是说,当除了镜子以外的所有一切都固定连接在一起时,独悬其外的镜子因为引力波的颤动便是珠子与棍子之间的相对运动。两个镜子不同的颤动使得不同方向上的两条长臂的长度产生细微不同,这个差异便可以由被反射的激光束的干涉条纹放大测量出来。

韦伯的共振棒是一根琴弦,他期待的是引力波脉冲的那一下拨动。韦斯的干涉仪则是一套高保真组合音响,他期望通过这个“天线”接收、记录、播放引力波的全套旋律。韦斯已经意识到,他这个仪器最敏感的频率范围正好与他所沉醉的钢琴的音域一致。他之所以对探测引力波着迷,正是少年时作为音响发烧友的延续。只是这时他神往的不再是调频台中的交响乐,不再是姑娘指下的钢琴曲,而是那来自遥远时空、浩瀚广宇的音阶。所谓“此曲只应天上有,人间能得几回闻”。


然而,韦斯却不得不面对人世间的烦恼。

进入1960年代末,美国社会格局发生了巨大变化。二战之后长大的新一代走向社会,不再相信父母一辈的保守理念。美国在越南战场陷入的泥潭也促使社会对军队产生疑惑、警惕。1969年,美国国会在例行的军队拨款法案中附加了一个“曼斯菲尔德修正案”(Mansfield Amendment),明文禁止军队出钱资助与军事技术不直接相关的科研项目,以减少军队对大学、公司等民间机构的控制和影响。

麻省理工学院首当其冲,一下子失去了大量来自军队的资助。韦斯的引力干涉仪项目立刻陷入断粮的困境。他这个学校里仍然没有广义相对论专家,更没有人能理解他这个小玩意的价值。韦斯只能自谋出路。

1973年,韦斯向国家科学基金会(NSF)提交了一份详细的资助申请,希望他们能支持他继续引力波干涉仪的研究,但很快就被拒绝了。基金会那时还在全力资助韦伯的实验。

这还不是最令他伤心的。一年后韦斯接到德国同行比令(Heinz Billing)的电话,询问他这边干涉仪的进展。韦斯很纳闷比令怎么会知道有这么个干涉仪。比令很不好意思,坦白说他们收到过美国基金会寄来的韦斯申请书,邀请他们做同行评议。那时比令在慕尼黑仿照了一根韦伯棒,折腾几年一无所获,正在失落中看到了韦斯的设计很感兴趣。他顾不上科学界匿名评审的伦理要求,自己就动手开始了干涉仪的研究。比令还告诉韦斯,不仅在德国,他这个设计其实已经在欧洲流传开了。

还不只是欧洲。在美国加利福尼亚,韦伯培养的第一个博士伏华德(Robert Forward)也在休斯飞机公司的实验室里自己建造起一个干涉仪,还就近拉到当时还是研究生的特蕾波尔帮忙。(伏华德后来没有继续他的科研生涯,而是急流勇退,成为一个职业科幻小说作家。)

韦斯自己倒也没山穷水尽,他那个用高空气球探测宇宙微波背景辐射的实验取得了不俗的成绩,确保了他获得麻省理工学院终身教职。美国航空航天局(NASA)对这个课题发生了浓厚的兴趣,希望能把该实验扩展到卫星上,进行大气层以外的测量。1976年,韦斯被航天局聘为宇宙微波背景辐射探测委员会主席,主持这方面的科研。航天局财大气粗,他不再需要为科研经费发愁,只是不得不暂时搁置引力波,他那聆听天籁之音的梦想。
韦斯的麻省理工学院团队正在施放高空气球,测量宇宙微波背景辐射。

(待续)


科普

Tuesday, January 23, 2018

捕捉引力波背后的故事(之三):命运多舛的先行者韦伯

约瑟夫·韦伯(Joseph Weber)一辈子都有一种阴错阳差的感觉。首先,他应该叫约拿·本·雅科夫·格伯(Yonah ben Yakov Gerber),一个典型的犹太人名字。他父母1909年离开俄国(今天的立陶宛)时,美国移民官顺手便把他们家族的姓“标准化”为英文的“韦伯”。他们说意第绪语(Yiddish),母亲给他登记时说话别人听不懂,于是他就有了这个发音相近的“约瑟夫”的名字。

子曰,名不正言不顺。韦伯5岁时被公交车撞伤,失去语言能力,几年没说话。等到他终于再开口时,他已经完全失去了意第绪语口音,操起一口语言理疗师教的标准美式英语。他家人干脆就叫他“杨基”(Yankee),似乎他已脱胎换骨,“融入了美国社会”,成为一个最普通不过的美国人“乔”(Joe)。

韦伯家境贫困,从小四处奔波打工,送报、球童、店伙计无所不为。但他自己更愿意跑的地方是当地图书馆,因为小小年纪的他已经看出这个社会上脑力劳动比体力劳动来得安逸。他最钟爱的是一本麦克斯韦尔写的物理教科书。中学毕业后他考入纽约市一所私立学院,但仅一年便因负担不起学费舍弃,转而考上免费的美国海军学院。在那里,他科学课程名列前茅,军事科目却总是拖后腿。有一次,他偷偷地在大餐厅里拉上电线,当官兵聚餐时突然播放出舒伯特(Franz Shubert)交响乐,赢得满堂彩。

1940年,韦伯从海军学院毕业,被派到航空母舰莱克星敦号上服役。一年后,太平洋战争爆发。莱克星敦号因为日本轰炸时不在珍珠港内侥幸躲过了浩劫,但几个月后在澳大利亚珊瑚海战中还是被击沉。韦伯当时的战斗岗位在甲板上,得以跳海逃生。他始终记得眼睁睁地看着莱克星敦号没入水面时,突然闪耀一片白炽光芒——这是他无法解释的一次光谱观察。

在那之后他改任驱逐舰船长,在加勒比、地中海等海域猎杀德国潜艇,护卫大西洋航道,直至登陆意大利。欧洲海战平息后,他到海军研究生院学习了两年,被任命为海军舰船部负责通讯、电子战技术的主设计师。
美国海军少校乔·韦伯

战后,韦伯以少校军衔退役,在1948年被聘为马里兰大学电机系教授,当时他29岁。学校要求他立即补修一个博士学位。于是他去找邻近乔治·华盛顿大学的物理教授盖莫夫(George Gamow),自我介绍是微波通讯行家,询问是否有合适的课题作博士论文。盖莫夫不假思索地说没有。

盖莫夫是宇宙学大拿。就在那两年之前他估算出宇宙大爆炸经过120多亿年的冷却、耗散,在今天应该残留着在微波频率上的微弱信号。他的学生那年还刚刚对这个辐射的温度做了新的估算。但盖莫夫是理论家,他可能从来没有去想过实际探测这个辐射,也可能没有把韦伯这个“工程师”看在眼里,轻易就拒绝了。

1964年,贝尔实验室的彭齐亚斯(Arno Penzias)和威尔逊(Robert Wilson)在试图提高微波通信质量时发现有一个无时不有无处不在的噪音,他们想尽办法也没法消除。找人求助后才明白他们无意中发现了盖莫夫预测的宇宙微波背景辐射,因而获得1978年诺贝尔奖。(这个宇宙微波背景辐射在引力波故事后面还会出现。)

无奈,韦伯转而去美国天主教大学找了一个导师,做测量氨分子微波光谱的课题。这样他开始了退役后的平民生涯:白天在马里兰大学讲课、带学生,晚上去天主教大学修物理。夜校的课程基本就只有一个老师:惠勒当年的博士导师赫茨菲尔德(Karl Herzfeld)。

这时韦伯才接触到现代物理。当他读到爱因斯坦1905年(与狭义相对论同时)提出的光量子辐射理论时,立刻领悟到可以利用受激辐射的概念放大他需要测量的微波信号。1952年6月,他在加拿大国际会议上宣读了他的主见。当时也在做这方面研究的哥伦比亚大学教授汤斯(Charles Townes)听了报告立即向他索取了论文副本。一年后,汤斯制成了“受激辐射微波放大器(maser)”。紧接着,同样的机制应用到可见光频率,便发明了激光(laser)。汤斯和两位苏联人后来因发明激光获得1964年诺贝尔奖,韦伯榜上无名。(诺贝尔奖档案中记载他曾在1962、1963年两度获得提名。)

终于有了博士学位的韦伯颇有点灰心丧气,觉得物理学店大欺客,把他当外人轻视。他想避开那时的轰轰烈烈,找一个没有纷扰的小角落放自己一张平静的书桌。在那些被家里小儿子们吵得睡不着觉的夜晚,他自己钻研起广义相对论。1955年,他趁着有一年学术假的机会,找到了普林斯顿的惠勒。

宅心仁厚的惠勒不仅没有拒绝他,还把他带去了教堂山那次广义相对论会议。

× × × × ×

费曼的“粘珠”假想试验并不十分严谨。会上有人诘问,棍子和珠子在引力波中更可能是同步地振荡,没有相对运动。费曼为此又提出一个不同的场景:设想到来的引力波不是连续的波动,而只是一个短暂的脉冲,颠一下过去了就没了。珠子受影响动一下就会立即停下,仿佛什么事没发生过。而棍子不一样,因为它内部的弹性(来源于原子间电磁作用)动起来不能马上就停下来,会继续“回响”一定时间才消停。这样也就能观察到引力波脉冲过去之后棍子和珠子之间相对运动。

韦伯对这个新解读更为感兴趣。在他看来,既然棍子可以被引力波振荡起来,那就已经证明了引力波带有能量,并不需要用什么珠子来帮忙观测。他知道这个讨论之所以是“假想试验”,是因为引力波能量实在太小,当时的仪器灵敏度不够,不可能实际观察到。但他对费曼的物理图像中有着更进一步的领悟。

我们轻轻地拨动一根琴弦,可以听到一声响亮的乐音。这是一个被放大了的效果,因为琴弦(以及附属的共鸣箱)的弹性因为拨动发生了“共振”。如果频率适合,共振的放大效果可以非常惊人。在韦伯的眼里,费曼的棍子就是一根琴弦,等待着引力波脉冲的拨动。假如碰巧发生共振,微弱的引力波被无数倍放大,也许就可以实际测量到了。

那是引力波是否存在、能否携带能量还在争议中的年代。即使费曼的粘珠论说服了绝大多数人,大家除了接受引力波,对它还基本一无所知。引力波如何产生、能量多大、会有什么频率、有多少能经过地球等等,都只有一些极其粗略的猜测。只是韦伯军人出身,不习惯事先搞清楚各种可行性再动手。与其继续让费曼嘲笑他们空口说白话,不如自己先试试能不能找到点实验证据。

教堂山会议后,韦伯与惠勒合写了一篇论文,系统地阐述了“粘珠论”。然后,他就回马里兰去动手做实验了。

他带着几个博士后和研究生花了几年时间尝试不同的设计,最后选中了一个相对很简单的装置:既然费曼说了棍子,他就用金属铝制作了一个直径65厘米、长1.5米、近1.5吨重的实心大圆柱,被称为“韦伯棒”(Weber Bar)。这不像我们想象中的琴弦,但原理依然一样,而共振时会有更大的效应。与琴弦不同的是,韦伯没有附加共鸣箱,而是直接在圆柱上贴敷了一圈敏感的压电传感器。只要圆柱有轻微的变形,就会产生电信号,然后通过电路放大记录。整个大棒被悬挂起来,与周围环境隔离。
探测引力波的“韦伯棒”设计示意图和韦伯在上面装置压电传感器的工作照。

他们又做了一系列实验测定环境因素的影响和相应措施,确定能够从噪音中分辨引力波的信号。最后,他把一个韦伯棒安置在1000公里以外的芝加哥市郊,其电信号通过专用的长途电话线路实时传到马里兰大学的实验室。那里有另外5个大小略有不同的韦伯棒。只有这两个地方的信号同时测到变异时,才能被认定是真实的引力波信号。这样可以排除一个地方的随机影响造成的假信号。

很难说韦伯开始时抱有多大的信心,但他的结果是惊异的。1969年头三个月,韦伯便测到了至少17次同时事件,远远不是瞎猫碰到死老鼠的偶然。那年4月,他在学术会议上正式宣布探测到引力波,当场掌声雷动。这如同贝尔尼和教堂山两次会议重新点燃的广义相对论火种在学界还完全没有思想准备时引爆了一颗炸弹,全世界的物理学家都震惊了。
1969年6月16日的《物理评论快报》发表的韦伯报告《发现引力波的证据》论文。

韦伯这时候已经转到物理系任教。他很快成了大明星,被邀请到世界各地讲学,也频频在报纸杂志上露面。世界各地的大学、公司实验室纷纷各显其能地建造起他们自己的装置,于是有了各种不同大小、不同形状的韦伯棒。它们有的被放置在真空容器里,有的被冷冻到极低温度,想方设法进一步降低环境噪音的影响。
德国物理学家比令(Heinz Billing)和他在慕尼黑普朗克研究所建造的“韦伯棒”。

1972年,阿波罗17号飞船登月时也顺带在月球上安装了一个引力波探测装置。笨重的韦伯棒当然不方便上天,这是韦伯的又一个、更为大胆的设计:将整个月球当作韦伯棒,在月球表面“贴上传感器”测量其变形。当然,他在马里兰也有一个同样的设备,测量地球作为韦伯棒被引力波“拨动”的共振。他期望的是这些不同的测量手段能够同时出现信号,确定无疑地指认引力波。

只是,韦伯所期待的回声一直没能出现。尽管他自己的仪器还在频频报告新的引力波信号,世界各地其他探测者却始终一无所获。于是人们不得不开始怀疑韦伯的数据。理论学家也没闲着。他们做了大致估计,如果银河系真的像他测出的频率和强度释放引力波的话,其能量的丧失会导致整个星系不稳定,这与其它观测数据相违。

于是,韦伯逐渐陷入困境。他一边极力改进自己的设备和数据处理,一边不得不回应越来越尖锐的质疑。刚开始,不同地点的同时信号只是用肉眼在画出的曲线上辨认的,有人建议后才改用计算机程序。不久有人发现他的程序有错,会报告虚假信号。后来韦伯就不再允许外人检查他的原始数据和处理过程了。

但他终于找到了一个可靠的证据。在普林斯顿,韦伯向惠勒、戴森等著名物理学家报告,新的数据表明引力波不仅常见,而且很有规律:每隔24小时有一次高峰。这肯定不是随机的噪音。而且,高峰出现时他的仪器正好处于面对银河系中心的方位,显然那里大星体密集、产生引力波的源泉多。因为地球自转,这个方位每24小时经历一次。

出乎预料的是,这次他没能赢得掌声。相反,一屋子的人全都坐不住了:引力波是空间本身的波动,没有什么东西可以阻挡,包括地球。如果他的仪器“面对”银河系中心时能测到,那么它“背对”那里时也应该能测到穿透地球到来的引力波。

在一流专家面前出现如此的低级错误大概是所有科学家最惧怕的恶梦了。韦伯却没有气馁。他在几星期后发表了改进数据分析之后的结果:他测得的引力波的周期果然成了12小时,不是他原先说的24小时。

韦伯还同意与贝尔实验室和罗切斯特大学的两个研究组连线分享数据。很快,他就找出了自己与他们那边同时测到引力波的证据。结果这次捅下了更大的娄子:不仅他声称的信号在对方看来只是噪音(还有他们故意植入的假信号),他还忘了他自己的数据用的是美国东部时间而对方用的是国际标准时,他的所谓同时其实相差了整整四个小时!

韦伯变得孤僻、焦躁。在一次学术会议上,一位科学家站出来指责韦伯拒绝公开发表这个对他极为不利的乌龙,属于学术腐败。韦伯被激怒,双方在堂上面红耳赤,高声叫骂,差点动起手来。主持人不得不横起自己的拐杖将两人隔开。

到1975年,连一直最支持他的戴森也写信劝他“认输”了。国家科学基金会把他的资助降到一年5万美元,他不得不遣散所有学生、助手。1987年,基金会又完全切断了钱源。马里兰大学也几乎将他开除,好歹才容许他保留了一个退休教授的虚衔。韦伯没有放弃,依然用自己的积蓄维护着他的设备。只是喧嚣一时的引力波风云基本上荡然无存,物理学界普遍认为再继续检验他的方法、数据只会是浪费时间。

韦伯在那些年间的一次访谈中表示他无法理解同行们的嫉妒和残忍。他提起以前因类似处境而自杀的著名物理学家玻尔兹曼(Ludwig Boltzmann),但表示自己心理坚强没有自杀倾向,只是心灰意冷。

韦伯却也没有被完全击垮。1980年,他在加州理工学院与费曼同桌午餐时,费曼对他唠叨自己那实验很不耐烦,问道,唉,你怎么还不放弃那引力波,要不去找找中微子试试?探测中微子正是当时物理学的一大难题。韦伯没有反感,反而当真了。1980年代,他发表了一系列论文,理论与试验并重,提出一个新颖的探测中微子手段,成为那个领域的开山鼻祖之一,却也同时引发了一场新争议。

× × × × ×

当年莱克星敦号被击沉时,韦伯得到政府一小笔赔偿费。他用那钱买戒指迎娶了中学时的小甜心(后来也是当时少有的女性物理学士)。1971年,韦伯在哥本哈根参加广义相对论会议(“GR6”)时,夫人不幸去世。一年后,52岁的他结识了才28岁的出名才女、天文学新秀特蕾波尔(Virginia Trimble),两人相处11天后闪婚。特蕾波尔那时正处感情低潮,发誓就要嫁给下一个遇到的男人,无论他是谁。

老年后的韦伯经常感叹,结婚时他特出名,没人知道特蕾波尔;后来人人知道特蕾波尔,却没人再记得他了。

2000年冬,81岁的韦伯依旧独自去他的实验室照看,在门外结冰的路面上滑倒,多处骨折。因为地方偏僻,他在冰天雪地困了两天才被人发现。手术治好了骨折,但并发的淋巴瘤一直未能痊愈,于9月30日晚去世。

他曾经可能成为看到宇宙大爆炸的第一人,他是提出激光概念的第一人,他始终坚信自己是找到引力波的第一人。然终其一生,韦伯与幸运女神总是擦肩而过,人们记住他的却只有他的失败。

惠勒记得的却是韦伯的勇气,因为当年敢于动手寻找引力波的只有他一个。惠勒觉得韦伯是个探险家,是与哥伦布(Christopher Columbus)、达伽马(Vasco da Gama)类似的人物,他开创了引力波实验的先河。

特蕾波尔晚年专注天文学历史,但小心翼翼地避免卷入对韦伯的评判。她内心觉得他还是测到了某种真实信号的,只是无法证实是否引力波。韦伯去世后,她卖掉他们的房子,把钱捐给美国天文学会创立了“韦伯天文仪器奖”,每年嘉奖一个在天文仪器上做出显著贡献的人。

2015年9月14日,人类第一次“真正”探测到引力波。按照传统犹太历法,那天正是韦伯逝世15周年。几个月后的新闻发布会上,73岁的特蕾波尔应邀坐在最前排,在一片欢呼喜悦中为亡夫流下了两行热泪。


(待续)


科普

Thursday, January 11, 2018

捕捉引力波背后的故事(之二):费曼的机灵和罗森的固执

与艺术世界相似,物理有“经典”和“现代”之分。艺术上的这个过渡体现了人们审美观的与时俱进。而诞生于二十世纪初的现代物理却是革命性的,带来了人类世界观的突变。

在经典物理的几个世纪里,物理学家对光是什么一直在纠结中。牛顿所主张的“微粒说”(光是粒子)遭到惠更斯(Christiaan Huygens)的“波动说”(光是波)的强烈挑战。随着对光干涉、衍射现象的观察,后者占了上风。及至麦克斯韦尔发现光就是电磁波,更似乎是下了定论。

也正是麦克斯韦尔方程组里蕴含的光速不变这个绝对性催生了狭义相对论。几乎同时,对“黑体”、原子的电磁辐射能谱以及光电效应的研究导致了量子理论的诞生。这时,光不再是单纯的波,而是再次以粒子出现——光子。

狭义相对论和量子力学这两大突破便是现代物理的起源。

光(或电磁波)这个既是粒子又是波的特性(所谓“波粒二象性”)直到1940年代末才有了严格的数学表述。那时,两大革命胜利会师,实现了麦克斯韦尔方程组的量子化。由此产生的“量子电动力学”完美地融合量子力学与狭义相对论,完成电磁相互作用的现代物理描述。

有趣的是,与爱因斯坦探索引力波时遭遇奇点相似,量子电动力学的发展过程中最大的困难是该理论计算出来的许多物理量都是无穷大,在现实中不可能。经过诸多物理学家的努力,日本人朝永振一郎(Shinichiro Tomonaga)和美国人施温格(Julian Schwinger)分别归纳出一种叫做“重整化”(renormalization)的手段解决了这个“发散”问题。不过他们动用的数学错综复杂,很难理解。更糟糕的是,一个简单的物理过程往往需要花好几天、几星期的时间推导演算,晕头胀脑还不敢确定结果是否正确。

1948年,30岁的费曼(Richard Feynman)在一次学术会议上演示了一种别出心裁的方法。他像小孩子画人型一样把物理过程用几根简单的线条画出来,然后说每条线、每个点都对应于一个函数,看图说话般地就写出了描述这个物理过程的方程式,用十几分钟的时间轻松完成了别人几个星期的工作量。

费曼这种魔术般技巧令其他物理学家既惊艳又困惑。直到后来戴森(Freeman Dyson)证明了它与朝永振一郎和施温格繁复的方程式在数学上其实完全等价之后才如释重负。这个“费曼图”不仅简单方便,而且在物理图像上直观明了,很快成为量子电动力学的正式语言。费曼因此一举成名,开始了他在物理学界独特的传奇生涯。(朝永振一郎、施温格、费曼三人因为这项贡献获得1965年诺贝尔奖。)
美国邮政局2005年发行的一枚纪念邮票,上面是费曼的头像和他的费曼图。

× × × × ×

那是物理学的黄金时代。第二次世界大战刚刚结束,物理学家才从原子弹爆炸的蘑菇云下回到平静的书桌旁。因为雷达和原子弹在二战武器中的决定性作用,物理学一夜间炙手可热,物理学家也成为普通民众心目中的英雄人物。

短短几年里,物理学有了相当大的进展。除了量子电动力学,晶体管的发明、“基本粒子”的不断被发现都在时刻刺激着新的突破。但在这一片大好形势中,广义相对论,尤其是引力波,却似乎是被忽视了。

同样被物理学界忽略的还有爱因斯坦。老年的他对物理学的这些现代成就几乎充耳不闻,在普林斯顿孤单地试图将电磁力和引力结合起来,找出他称之为“统一场论”的比广义相对论场方程更广义的方程式。直到1955年4月18日去世。

1955年也正是狭义相对论问世50周年、广义相对论问世40周年的年份。物理学家已经在筹备一场纪念会议,在爱因斯坦曾经为专利局打工的瑞士伯尔尼市举行。爱因斯坦也已计划出席,他的不幸去世赋予了会议更及时的象征意义。著名物理学家泡利(Wolfgang Pauli)在那年7月召开的会议开幕致辞中指出:“(我们现在)这个重要的历史时刻是相对论理论以及整个物理学历史的转折点。”至少从广义相对论的角度,他的话并非虚言。

自然,引力波是会议上的一大议题。比较讽刺的是,对引力波持最强烈否定态度的正是爱因斯坦的前助手、柱面引力波的冠名人之一罗森。

当年离开普林斯顿去了苏联(现乌克兰首都基辅市)的罗森很快自己也发现了那篇论文中的数学错误。他给爱因斯坦写了一封信,但未能送达。后来罗森收到朋友寄来的一份剪报,才从新闻中知道论文被“降级”发表在一个小刊物上。又过了好久他才得以读到那期《富兰克林研究所所刊》,当即由惊诧转为极度的不快。虽然他走之前曾同意由爱因斯坦全权处理论文,却绝没有想到爱因斯坦不仅换了期刊还把整个论文的结论都颠倒了发表。他给爱因斯坦写信抱怨,说发表的版本虽然避免了当初的小错误,却付出了回避实质问题的代价。

在罗森看来,实质的问题依然是引力波不能存在。于是,他也自作主张地把他们论文的原稿略作修改但保留原来的结论,发表在苏联一份学术刊物上。(爱因斯坦和罗森这篇历史性论文的原底稿已经失传,罗森发表的这个版本应该是最接近原样的。)

罗森在基辅只呆了两年便匆匆返回美国。这时他已经在以色列定居,是以色列物理学会和科学院的创始人之一。在伯尔尼的这个会上,罗森发表了他的最新成果:他推导出他们名下的柱面引力波所能携带的能量是零,因此没有实际意义。


两年后,美国的物理学家也组织了他们自己的广义相对论会议,在北卡罗来纳州大学所在的教堂山召开。这次会议有美国空军的科研经费资助。在二战的余威下,空军抱有幻想,有朝一日这些神奇的物理学家会发明出抗重力的神器来。

普林斯顿大学教授惠勒(John Wheeler)是主要组织者。他顺带着把自己过去的学生——无论他们是否涉足过广义相对论——全都邀请来共襄盛举,包括他最得意的、第一个博士学生费曼。

费曼这时毛羽已丰,颇为恃才傲物,尤其是看不上广义相对论这一摊。为了显示清高,他特意用了一个假名,在会议上注册为“斯密斯先生”,以至于有些与会者不知道他的真实身份。

费曼到会晚了一天,错过了第一天关于引力波的讨论。在看到众多专家围绕着复杂的数学方程争论得不亦乐乎时,忍不住插足发表了一番高论。

他首先觉得当时的广义相对论研究很空洞,没有实验的支持。他用不久前解决的量子电动力学问题举例:他们知道他们遇到的发散问题只是数学上的困难,因为已经有各种实验测量告诉他们最后的物理结果不是无穷大。但在广义相对论领域却不存在这个好处,不容易把握方向。

费曼没有提到爱因斯坦和罗森那篇论文所经历的反复。因为他并不了解——那时候还只有罗伯森和《物理评论》编辑知道其中过节。但他的确一针见血:正是因为没有实验结果做参照,爱因斯坦和罗森才会在遭遇奇点时轻率地得出、接受引力波不存在的结论。

所以费曼怀疑他们在讨论的会不会只是数学游戏。他提出如果一味追求理论的严格、数学的准确,反而会失去对物理图像的把握——所谓只见树木、不见森林。

至于引力波是否能携带能量的争论,他更是完全舍弃数学推导,提出了一个简单的假想实验:

既然引力波是空间本身的波动,它到来时空间中所有物体都会随之振荡起来。设想有一根长棍子,上面有一个或几个非常小的珠子,可以沿着棍子滑动。引力波到来时,棍子和珠子的反应会有所区别:棍子每个部分都要随着引力波振动,但因为它是完整的一体,各部分之间受原子间的电磁力束缚,振荡幅度会非常小。而珠子是个体,它的振荡幅度就会比棍子的大。这样,我们可以观察到珠子与棍子之间的相对运动。如果珠子与棍子之间有些许摩擦,我们还可以探测到摩擦生的热。

能量是守恒的。在这个假想实验中,摩擦能够生热,其能量只能来自引力波。因此,引力波必然是携带着能量的。

不料,费曼这一番天真的外行话倒还真让一众引力学家脑洞大开,几乎立刻就接受了引力波的现实。这个假想实验被称之为“粘珠论”(sticky bead argument),后来被用于证明引力波的正式论文中。
费曼1957年在教堂山广义相对论会议上解释“粘珠论”所用的示意图。

当然不是所有人都可以这样被说服。罗森没有参加美国的这个会议,也一直没有接受引力波,尽管他的论文得到其他专家反驳。迟至1979年,他还发表了一篇论文,把费曼博士论文中与惠勒合作研究电磁波的一种方法运用到引力波上,再一次“证明”了引力波无法存在。与40多年前如出一辙,他论文的题目是《引力辐射存在吗?》(Does Gravitational Radiation Exist?)。只是那时已经没有人再注意到他的工作了。

× × × × ×

这两次会议最成功之处是重新点燃了广义相对论的香火。这个国际会议作为传统保持了下来,每两三年举行一次。以广义相对论的英文缩写编号,1955年的伯尔尼会议代号是“GR0”,1957年教堂山则是“GR1”,以此薪火相传。下一次会议——“GR22”——将于2019年在西班牙举行。

费曼后来也还参加过这个会议,但总是牢骚满腹。他曾在欧洲开会时给家里老婆写信抱怨这个领域如何地无聊,请求她禁止他以后再参与这个会。他也没有对引力波表现出多大兴趣,而是坚持引力必须像电磁力那样量子化之后才能有意义。他做了一些尝试,但也没能找到实现引力量子化的途径。(广义相对论与量子力学的融合至今仍是一大难题。)

当时在教堂山会议上听费曼讲“粘珠”的还有一个没人注意的退伍军人。可能整个屋子里只有他一个人觉得费曼的主意并不纯粹是在“假想”,而是有可能实现的。因为与其他那些纸上谈兵的理论家们不同,他是能动手做实验的。


(待续)


科普

Monday, January 1, 2018

捕捉引力波背后的故事(之一):爱因斯坦的先知、失误和荒唐

当牛顿(Issac Newton)坐在树下被掉下来的苹果砸了脑袋时,他突然领悟到苹果之所以掉下来,是因为地球对苹果有吸引力,这个“重力”促使苹果加速落下地面。

这只是一个美丽的传说。但牛顿的确发现了“万有引力”,即任何两个物体之间都存在吸引力。将引力与牛顿同时发明的动力学三定律结合,不仅可以解释地球上重物的下落,还能准确描述月球绕地球、行星绕太阳的公转,甚至预测、发现过去不知道的海王星、冥王星。这是十七世纪物理学的顶峰。

万有引力定律很简单:两个物体之间的引力大小与它们的质量成正比,与它们之间的距离平方成反比。牛顿没有想到去探究一下,如果两个物体相距非常远,它们如何知道彼此的质量和距离?如果一个物体的质量变了或者挪近了一点,另一个物体怎么就会知道自己的受到的引力应该不一样了?对于牛顿来说,这都是不言而喻、理所当然的。

直到二十世纪初,爱因斯坦(Albert Einstein)觉得这很不可思议。传说他在阿尔卑斯山中开会,与一些大物理学家登山时,曾对居里夫人(Marie Curie)抱怨:你看我们从山下走到山上,地球的质量分布有了变化。如果月球上、火星上有智慧生物的话,他们通过测量地球引力的变化,马上就能知道有人上了山。这个信息的传播超过了光速,违反了相对论。

相对论是爱因斯坦在1905年建立的。当时他25岁,在瑞士专利局里打着一份小工。相对论惊世骇俗,指出日常生活中习以为常的空间、时间是“相对”的,因人的所在而异:一个人看到一辆高速开过的火车中的距离会缩短(“尺缩”)、时间会变慢(“钟慢”)。而更有意思的是这个现象是反之亦然的:火车里的人也会觉得站台上的尺子缩短了,钟变慢了。他们都没有错,只是时间间隔和空间距离在不同的参照系中不具有一致性,是相对的。唯一例外的是光传播的速度:光速在所有的参考系中都是一样的、绝对的。而且,其它任何有实际意义的速度都不能超过光速。因此,牛顿那不需要时间传播的引力违反了相对论。

为了解决这个问题,爱因斯坦又花了整十年的时间,在1915年发表了“广义相对论”。这时,空间和时间不仅仅是相对的,而且不平坦、会弯曲。苹果之所以掉下来,月球之所以绕地球转,是因为地球附近的时空因为地球的质量而弯曲了。

爱因斯坦用这新理论推算了水星公转轨道近日点的进动,成功地解决了观测结果与牛顿力学不符合的难题。1919年,英国天文学家爱丁顿(Arthur Eddington)通过对日全食时恒星位置的测量证实了光线的确会因(太阳)质量而弯曲,符合广义相对论的预测。这个结果轰动一时。尽管时空弯曲匪夷所思,也逐渐开始被科学界接受。爱因斯坦本人则一下子成为超越科学界的社会大明星。

荷兰布尔哈夫科学博物馆(Museum Boerhaave)东墙上纪念广义相对论的图像。上面是恒星光线因为太阳质量而弯曲的示意图,下面是广义相对论场方程。

然而,当爱因斯坦和居里夫人从山下走到山上时,这个变化的信息是如何通过弯曲时空传递的,却依然不明朗。

× × × × ×

经典物理学在十九世纪的一个伟大成就是麦克斯韦尔(James Clerk Maxwell)在1865年以一组方程式统一了电和磁两种作用力,同时改变了人类的世界观:看不见摸不着的电磁场是一种物质存在;电磁场随时间的变化形成电磁波,可以在空间传播、传输信息和能量。我们日常熟悉的光,就是电磁波。所有的电磁波在真空中具备同样的速度,也就是光速。

“教皇的天文学家”、梵蒂冈天文台长 Guy Consolmagno 在一次活动中穿着一件科学衫,上面模仿圣经口吻写着:“上帝说,(麦克斯韦尔方程组),于是就有了光。”

牛顿的万有引力定律和描述两个电荷之间作用力的库仑(Charles-Augustin de Coulomb)定律在数学形式上完全一致:力都是与距离平方成反比,与物理性质(分别为质量和电荷)成正比。因此,当麦克斯韦尔揭示出电荷之间的作用是以电磁场、电磁波的形式传播时,人们自然而然地会联想,万有引力是不是也会以一种类似的引力场、引力波传播?即使在相对论问世之前,包括著名科学家庞加莱(Henri Poincare)在内很多人都做过这方面的推断和研究。

在广义相对论中,引力场便是质量附近弯曲的时空。那么,质量的变化或运动势必引起弯曲程度的变化,于是这随时间而起伏的弯曲便如同水面上荡漾的涟漪,不就是引力波吗?

只是直觉的图像不能代替严谨的逻辑。自从确立了广义相对论的场方程之后,爱因斯坦和他的同行们便孜孜不倦地从中寻找、推导出引力波的数学形式。却遇到未曾意料的困难。

广义相对论的场方程由十个非线性方程组成,几乎无法求解。只有德国物理学家施瓦西(Karl Schwarzschild)在最简单的条件下找出一个精确解来(后来才知道他的解对应于黑洞,但当时还没有那个概念)。除此之外,只能用逼近修正的办法寻求近似结果,而如何找到合适的近似方式十分地让人头疼。

1916年初,爱因斯坦给施瓦西写信时颇为悲观地叹道,“在引力场中可能并不存在与光波对应的引力波。”他解释说可能的原因是电荷有正负之分,因此电磁力有时异性相吸、有时同性相斥。而自然界不存在负质量的物质,只有引力,没有斥力。(正负电荷组成的偶极子的振荡是产生电磁波最基本的方式,而引力场中不存在偶极子。)

不过也就在那年六月,爱因斯坦在柏林的普鲁士科学院做报告时,宣布他已经通过一种近似方法找出了引力波的形式。与电磁波一样,引力波以光速传播。他说他一共得到三种引力波模式,其中两种不传输能量,可能没有意义。但第三种应该是实在的引力波。

可惜好景不长。一年后芬兰的一位物理学家诺德斯特龙(Gunnar Nordstrom)指出爱因斯坦的推导中有严重错误,结论并不成立。爱因斯坦知错必改,在1918年1月发表一篇题为《论引力波》(On Grativiational Waves)的论文作修正。

1922年,相对论最卖力的“宣传部长”和捍卫者爱丁顿也对这问题感兴趣,自己钻研后发现爱因斯坦引力波的前两种模式的速度其实是无穷大,不由大乐。他嘲讽说引力波不是以光速,而是在“以人类的想象力(之速度)”传播。一时思想混乱。

研究广义相对论动用的数学十分复杂,所需要的许多概念、工具当时都还还没有发展出来。包括爱因斯坦在内,大家都在盲人摸象般地探索。而与此同时,引力波依然虚幻飘渺。

× × × × ×

十几年后,爱因斯坦为了躲避纳粹政权的迫害,已经离开了德国。他定居于美国的新泽西州,在新成立的普林斯顿高等研究院继续学术研究。1936年,他与年轻助手罗森(Nathan Rosen)再次审度广义相对论场方程,结果出乎意料:他们居然从数学上证明了引力波根本无法存在——因为那会导致物理上不能成立的奇点。

他们立即写就一篇论文,送交美国权威的《物理评论》(Physical Review)杂志发表。标题就石破天惊地设问《引力波存在吗?》(Do Gravitational Waves Exist?),而结论是否定的。爱因斯坦同时还写信给他的朋友、也已经逃离德国在英国定居的物理学家玻恩(Max Born)通报这一“有趣的结果”。他说“虽然引力波被假设在第一近似条件下肯定存在,但其实不对。相对论的非线性场方程比我们现在所相信的要更复杂。”

不到两个月,《物理评论》给爱因斯坦寄来了一份匿名的审稿意见,有十页之长,指出了论文的一些错误,并说审稿者怀疑其中的推导和结论靠不住。编辑希望能看到爱因斯坦对这些意见的回应。

正在湖边别墅度假的爱因斯坦看到这封信顿时火冒三丈。他大概压根就没有去看看审稿意见究竟有什么内容,就龙飞凤舞地直接用德文给杂志社写了一封简短回信:

亲爱的先生,
我们(罗森和我)给你们寄去论文是为了发表,并没有授权给你们在付印之前把稿件给专家看。我看不出有任何理由来回应你们那匿名专家的意见——反正那意见也是错的。因为出了这样的事,我准备把稿件改送其它地方发表。 
尊敬地,【签名】 
附笔:已经去了苏联的罗森先生授权我在这件事上代表他。
爱因斯坦给《物理评论》的亲笔回信

科学论文发表之前需要通过匿名的同行评议这个制度今天非常普遍,但在当时还是新鲜事物。爱因斯坦在德国发表了大量论文的《物理年鉴》(Annalen der Physik)那时没有这个制度。到美国后,他虽然已经在《物理评论》上发表过论文,但还从没有收到过反对意见。如此破天荒遭遇让他感到羞辱,便以为是杂志破了规矩。(其实,爱因斯坦离开德国前担任普鲁士科学院院长,曾经常为院刊审稿。当他看到他认为毫无价值的投稿时,也从来没有客气过。)他说到做到,转身就把论文原封不动地寄往费城的一家小刊物《富兰克林研究所所刊》(Journal of the Franklin Institute)。

罗森在投稿后就去了苏联。接替他的是新到的英菲尔德(Leopold Infeld)。虽然同样任助手,但英菲尔德年近40,已经不那么年轻了。他是因为在英国与玻恩合作的相对论工作引起爱因斯坦的注意而被他招过来的。

英菲尔德第一天上班,就碰见爱因斯坦与意大利著名数学家列维奇维塔(Tullio Levi-Civita)站在黑板前叽里咕噜地用“一种他们以为是英语的语言”讨论引力波。看着爱因斯坦“平静地”阐述着引力波不存在的缘由,英菲尔德大吃一惊。不过他很快说服了自己接受这个结论,还自己找出了一个证明办法。

后来英菲尔德在看球赛时遇到刚从加利福尼亚理工学院度完一年学术假回来的著名天文物理学家罗伯森(Howard Robertson),两人一拍即合成了好朋友。第二天,英菲尔德在数学系大楼见到罗伯森,得意洋洋地说他明白引力波为什么不存在。罗伯森自然不相信。两人仔细推敲了论证过程,罗伯森很快就找出了其中的毛病,令英菲尔德敬佩不已。他立即告知了爱因斯坦。爱因斯坦倒是回答说他也是刚刚发现了有问题。

巧合的是爱因斯坦已经安排好第二天在普林斯顿的学术例会上讲解他这个新成果。他一五一十地推演了引力波不能存在的“证明”后坦承这个结论可能并不成立。他几乎自嘲地感慨道,“如果你问我有没有引力波,我只能说我也不知道。但这是一个非常有意思的问题。”这句话至今还经常被人援引作为爱因斯坦曾经怀疑引力波的证据。

我们在地球上习惯用经纬度作为坐标系,球面上每一个点都有特定的经度和纬度。只有两个例外:南极和北极。在这两个点上经度完全没有意义,无法定义。这在数学上成为奇点,但并不说明这两个点不能存在。它们其实与地球上其它地方在几何上没有区别。如果我们换一下坐标或者方向,原来的极点就可以有“正常”的坐标值了。

爱因斯坦和罗森的错误属于同样的性质,只是其中的数学复杂得多。还是罗伯森进一步建议:如果把论文中的平面坐标系改换成柱形坐标,那么不仅原来的奇点不复存在,还可以推导出引力波来——不过不再是他们想寻找的平面波,而是柱面波。

这时候,《富兰克林研究所所刊》已经毫无悬念地接受了投交的论文并寄来排好版的清样请爱因斯坦校对。爱因斯坦也不含糊,直接就在校样上大刀阔斧,改得面目全非。因为结论已经完全相反,他干脆把原来《引力波存在吗?》的题目改成了《论引力波》,与十几年前的论文同题。修改后的论文是一个很有意思的结构:论文首先给出引力波作为场方程严格解的结果,然后叙述对这种解(也就是引力波)是否可能存在的“疑虑”,最后证明这些疑虑是没必要的,因为存在有严格的柱面波。

《富兰克林研究所所刊》最后发表的爱因斯坦和罗森《论引力波》论文版本

爱因斯坦在附给编辑部的信中只是轻描淡写地说他已经发现原稿的一些内容需要做一些重要的更正。发表的论文中只有一个脚注感谢罗伯森提供的帮助,但没有说明是什么性质的帮助。这个新版本的《论引力波》成为广义相对论场方程中引力波的第一个严格的数学表述,经常被称之为“爱因斯坦—罗森柱面引力波”。

在这场“风波”中,《物理评论》守住了同行评议制度的底线。他们不仅没有屈服于爱因斯坦的淫威,为他的论文开后门,而且还坚守了匿名原则,始终没有透露审稿者身份。直到69年保密期过后、当事人均已不在人世的的本世纪初,《物理评论》才公开了当时的记录。人们恍然大悟,原来那审稿的就是罗伯森。

在《物理评论》和罗伯森本人保存的档案里还发现罗伯森后来给《物理评论》编辑写过信,通告《富兰克林研究所所刊》发表的新版本表明爱因斯坦已经全盘接受他当初的审稿意见。但在公开场合,罗伯森至死都守口如瓶。他在发现身名显赫的同事犯了错误时,不显山不露水,通过英菲尔德这个小一辈迂回、委婉地提供协助,更没有试图为自己挣半点功劳,显示出非凡的绅士风度。(罗伯森当初的匿名审稿意见中便已经提到了论文讨论的其实是柱面波,只是爱因斯坦压根没有当回事。)

相反,爱因斯坦在那之后直到逝世的20年里,再没有向《物理评论》投过一篇论文。


(待续)


科普

Friday, December 30, 2016

舅舅

我的幼儿园生涯是在徽州岩寺小镇上开始的。那时住在外婆家,每天要走相当一段乡间小径上下学。只记得学校是街头的一间大厅子,里面众多的孩子整天跟着老师朗读《老三篇》。如果往学校的另一方向再走上差不多的一段路是舅舅的家,那里除了舅舅、舅妈,还有三个表哥可以一起玩。

小学时离开了岩寺,到休宁县城跟奶奶住。每年暑假还会去岩寺外婆家。刚开始是父亲在自行车后座上绑上一块洗衣板加长后载姐姐和我两人来回,稍后便是我们两个孩子自己坐长途汽车。那时的人胆大,这边把我们两个七八岁的孩子送上车,叮嘱一句留神看到岩寺车站记住下车便不管了。到了岩寺下车,多半是舅舅带着某个表哥来接站,把我们送到外婆家。在那个没有电话的年代,大人之间是如何联络的我至今也不明白。

外婆去世后,假期再去岩寺便是直接去舅舅家了。


虽然从小就浪得了一个“书呆子”的虚名,1970年代却是一个没有书读的荒唐时代。告别小人书之后,无论是学校还是当地图书馆,都很难找到可读的书。小学期间读到的稍微厚一点的只有一本没头没尾的《红岩》。初中则把《欧阳海之歌》翻烂了——那比学校里统一购买的《雷锋的故事》强多了。记得小学实在无聊的时候几乎每天翻阅邻居的《参考消息》,还曾饥不择食地拜读过《哥德纲领批判》、《反杜林论》这样的巨著。以至于做作业造句时便带上了今天网上愤青的风格,动辄以国际大事论述形势,害得老师都不敢轻易批改,唯恐着了小屁孩的道而犯上立场错误。

在那样的一片沙漠中,舅舅的家便是稀有的世外桃源。那时只知道舅舅是岩寺乡村小学的语文老师,居住的农房后面便是自己的菜园和猪圈。但楼上有一间光线昏暗的“书房”,里面堆积着他的藏书和报刊,绝大多数是文革前出版的。他曾经订阅了大量刊物,按年份用棉线装订成册,竟比图书馆还专业。也许是因为荒乡僻野的缘故,这些藏书经历“破四旧”和文革依然完璧。

只有在舅舅家里我才得以成为真正的书呆子。不知道有多少个暑假炎热的日子里,我一个人躲在阁楼里漫无目的地翻看各种书籍,只在舅妈的大嗓门呼唤中才出来吃饭。那些文革前的小说和散文打开了一个与当时主旋律写作风格截然不同的文学世界。

初中时舅舅家翻修了新房子,有了水泥地板,楼上的书房明亮多了,也有了书架陈列新书。那时我的读书兴趣也与时俱进,开始跟随《物理世界奇遇记》里的汤普金斯先生似懂非懂地接触到相对论和量子世界。


至少我在的时候,舅舅自己从来不进书房,他也许出门在外,也许在自己的房间里读书。黄昏降临不再能读书时(那时候没有电灯,煤油灯也不怎么点),一家人晚饭后会聚集在大厅或小院里乘凉聊天。这时候舅舅会询问看了哪些书,然后凭记忆对书的内容做些许点评。似乎所有的藏书他自己都是读过的。

也是初中时有一年我在岩寺度寒假,正月里有很多天跟随舅舅四处走亲戚拜年。徽州乡下过年的传统是春节前准备好大量食物,主要是炸肉圆、烧肉之类。正月里不怎么再烹调,有亲戚上门便把这些年菜下锅一热就好。那些天来回拜访,到各家吃的几乎都是同样的菜肴,见的则是只有舅舅才明白的一些远房关系。这些记忆中早已淡漠了,只剩下那没完没了地走在乡间小道上的感觉。不知为什么舅舅只是带着我一个人去各地拜年,我们俩似乎走遍了岩寺附近的乡邻,经过无数徽州所特有的民居、牌坊和祠堂。

那时候没有旅游业,徽州浓郁的人文历史还属于“四旧”的范畴。还没有破败或被拆毁的古建筑像孤儿一样自生自灭,没有任何保护或铭牌介绍。我们不经意间就会走过棠樾牌坊群或者独一无二的女祠堂。只有舅舅能够随口讲出这些古迹的历史渊源和背后蕴藏的家族历史,不过限于当时的政治形势他也多是点到则止。

一路上讲得更多的是文字。舅舅津津乐道诸如“此木是柴山山出,因火起烟夕夕多”等文字游戏般的对联。还有“矮”与“射”两字是否被用反了的历史典故。都是当时课堂上绝对不会涉及的趣味知识。

我们很少遇到过客。四周总是空旷的田野,衬以皖南冬天云雾缭绕的绿水青山。现在想来,我们两人走在那乡间小道上的情形在城里有闲情的人看来恐怕很有诗情画意。那却不是少年的我所能体会的,记得的只是寒冷和寂静,伴随着舅舅不高不低、不急不缓娓娓道来的声音。


从舅舅家后门出去沿着一条小径走不远就到了一条河边。当年那里没有桥,过河靠的是撑篙的渡船。当年也没有污染,河水清澈,正是夏天洗澡的所在,偶尔还可以搭上渡船来回玩耍。舅舅是从来不参与这些户外活动的。或许是因为他有作为一家中唯一吃商品粮的资本,或许他秉承着中国传统士大夫的清高,他也从来不作农活,不怎么帮忙家务,只是有时半得意、半自嘲地吟诵几句“君子远庖厨”的古话。舅妈没有什么文化,自己读不了那些藏书,却豪爽大气,农活、家务一手包揽,井井有条。两人相濡以沫,我从未见过他们红脸、吵架。

那个年代,但凡有点知识的人多半都怀着各种冤屈。即使是在乡村,我在亲戚邻居中也见过不少因各种缘由怀才不遇的、牢骚满腹的、借酒浇愁的,甚至动辄打骂家人孩子出气的。我至今不知道舅舅是否受到过任何冲击,因为他永远是那样温文尔雅,喜怒不形于色。他也不像那时有些大人一样热衷传播街头的“奇谈怪论”或针砭时弊。我记得他说过唯一有点“出格”的话是十大元帅中好几个人不够格,只有林彪最能统帅云云。

历史是在我上初中时开始变迁的。高考恢复了,有知识的人开始重新吃香。我上高中时有一次舅舅来到县城看我,告知他被临时聘请到徽州师范学校(当地的中专)为那里一名教授做研究助手。虽然这个位置实在微不足道,但我却体会到他那平静外表之下所深藏的喜悦。

之后不久我就离开家乡上大学、出国留学了。三十多年间与舅舅只见过非常难得的几面。我知道他后来被正式聘请到徽州师范教学,再后来便退休了。又听说他退休后积极参与家乡后来兴起的收集民粹、修地方史活动,还热衷于书法、拉胡琴唱京戏,得到颇多的奖项。而他这些艺术才能我当年竟是一无所知,大概还是因为那时的政治形势被他深藏不露了。

几年前回国再见到舅舅时他已深受糖尿病折磨,但一如既往地乐观、温和。他最得意的不是那些奖状,而是他的大孙子,曾经也像我一样整天躲在书房里翻阅他的藏书。

再后来,听说他们那房子也被拆迁了,老两口搬进小区楼房做了寓公。舅妈说搬家时他们的书籍便有700斤。却不知道他们是否还能拥有一间书房,那么多的宝贝藏书是否还有自己的天地。


舅舅方志远,徽州师范退休教师,于2014年2月22日辞世。



(2014年3月5日)


怀旧

当年的大学毕业论文

北大学制四年,物理系在第三年最为痛苦。残酷的“四大力学”再加上与之配套的几门数学基础课和没多大实际用途电子技术课等等,确实是压得人喘不过气了。记得有一个学期期末其它系的学生都考完试在宿舍里通宵狂欢了,我们还剩下两门课要考,郁闷。

第三年过去后,绝大多数学生报名参加当时的CUSPEA出国考试,考上的便一劳永逸,再也不用背书考政治了。其余的学生则在几个月之后考国内的研究生。这样,等到四年级的最后一学期——也就是没有课,专门做毕业论文——的时候,一部分学生正屁颠屁颠地准备出国,另一部分考上了国内研究生的也大松了一口气。剩下的人数比较少,他们因此可以在毕业分配中有比较多的选择余地,也在为此上下忙乎着。没多少人把毕业论文当回事。
笔者属于第二类,因为前面考取CUSPEA出国的人比较多,留出了空位而勉强混得一个北大研究生的位置。毕业论文选的是理论物理,与另一位同学一起分到了秦旦华老师的名下。


依稀记得当时做实验的毕业论文需要有实验报告,而做理论的只要求写读书报告。我们第一次见到秦老师,她给我们各自准备了一大叠影印的国际期刊文献。是同一个专题:某一个原子光谱的精细结构(具体内容早记不得了)。但我们俩拿到的方向略为不同。那位同学的文章比较纯粹理论化,我拿到的则偏向于计算。要计算光谱,需要知道电子的波函数。因为不可能完全求解多体的薛定谔方程,波函数只能通过某种近似方法取得。我拿到的文章里主要的一篇是用变分法,即猜测一个波函数的数学形式,设置一些系数变量,然后用数值方法找出具有最小能量的系数数值的组合,这样便得到一个比较好的近似波函数。那篇文献上用的波函数模型相当复杂,好像有30还是50来个参数。

我还没看明白呢,一天秦老师把我们找去,给我们介绍了她多年的好朋友,理论物理所的研究员庆承瑞。原来这个课题是她们两个当时一起在研究的。庆老师极其爽快,上来就说那文献中的波函数太繁杂,应该可以用一个简单的形式代替。她说着就在黑板上演示起来,波函数的尾巴应该是什么样的,头应该是什么样的,中间又大致是什么形状(也就是薛定谔方程在那几个极限情况下的精确解)。说着说着就把几条线连在了一起,组合成一个波函数的形式,只用了5个参数。

我们刚刚学过量子力学,学的都是书上按部就班的公式推导。还从来没见过这么去“猜”波函数的做法,觉得甚是新鲜。

庆老师画完了,就说,5个参数,你要愿意就可以去试试求能量的极值,看看这些参数应该是什么。我一看这大概比写读书报告有意思,当即就跃跃欲试。那是1984年,计算机进入中国还不久。科学院刚刚有了成套的IBM大型机,具体型号不记得,是那种每个用户有自己的虚拟机(virtual machine, VM/CMS)的那种。庆老师对我们津津乐道地吹嘘了半天。我半懂不懂,对这种技术上的事情也没多大兴趣,只听到会有一台大计算机可以由着自己怎么折腾都没事。那时候我们刚刚上过一堂计算机基础课,也就知道一点“IF”、“GOTO”的语句,其它一无所知。

庆老师给我弄了一个账户,带我去当时好像还是位于荒郊野外的一座不起眼的房子。里面是我第一次领略到“现代化”的机房设备,第一次踏上垫高的地板,看到泡沫塑料式的天花板。那时候还没有单人隔间,也就是沿着墙摆放一排终端,像图书馆那样,去了后自己找一个空着的终端上机。里面的人年龄都比我大出一截,互相好像从来不打招呼。大家都埋头干活,只是偶尔有人进出或起身到打印机取那宽大的绿纹打印纸。


波函数和变量有了之后,变分法求极值原理上极其简单。最后无非是要解一个多元方程组,方程组里的系数则通过对波函数的数值积分而来。用FORTRAN语言写这个程序,做积分和解方程都有现成的程序库可以调用,并不需要自己写。但我是两眼一抹黑的新手,拿着机房里的厚厚的一本程序库说明愣是花了好几天才琢磨出那东西该怎么个用法。接下来把自己的函数什么的写成程序,更是花了九牛二虎之力才得以运转。

那阵子是北京的初夏,天气炎热。那个机房是我所知道的附近唯一有空调的所在,因此倒也心旷神怡。每天一早就骑自行车奔那里而去,中午出来吃顿饭,然后一直到晚上才回宿舍。后来有同学说我那两三个月似乎失踪了,他们毕业前的各种活动我也基本一无所知。

方程最后解出来了。用我们自己5个参量的波函数计算出来的精细结构与文献里几十个参数的结果在误差范围内符合得很好,因此是很成功的。记得当时两位老师一起讨论时说起过可以写成论文发表。但那时我们已经毕业在即,又因为1984年大阅兵暑假不许留在北京,发配回乡,这事也就搁下了。更重要的大概是那会儿大家都还没有重视发表论文,两位老师不在乎。我也还没到准备自己申请出国的时候,未能前瞻到发表论文可能会有的重大意义。

当然毕业论文还是写了的。具体写了什么、怎么写的一点印象都没有了,只记得那时因为没有复印机可用,还必须买复写纸来手写出一式几份的稿子。论文的写作过程中也没有任何指导,全是自己琢磨着写。因为有自己的工作,论文的主体应该都是自己的内容。但现在回想起来,其引言、结论部分大概难免会有从阅读的文献里直接抄袭或剽窃过来的成分。


这个毕业论文的工作是我第一次直接参与科研的经历。那时对课题本身的意义毫无所知,是老师布置的;所用的波函数模型是老师一手提供的,对其含义也只是一知半解。自己实际上所作的事情不过只是技术员性质,就是把别人的思想和模型写成程序,运算出结果。但对于在当时中国大学里教育出来的我,这却是一次大开眼界的过程。后来在美国上研究生,看到这里的教授随手分析物理问题,脑子里便会回想起庆承瑞老师信手在黑板上“猜”波函数的过程。那是对物理真正理解的开始。

毕业论文的另一个收获是结识了秦旦华老师。后来在北大上研究生时虽然没有师从她,却联系频繁,经常晚上到她家里拜访,甚至会专门去她那里看足球赛。她对我们几位研究生一直怀有慈母般的亲近,那是后话。

(2011年5月1日)


怀旧

世界杯1982

八十年代初的北大有着一种与今天不那么相似的浮躁。那时候的大学生会因为中国男排反败为胜赢了南朝鲜便大肆聚众闹事,并据说因此喊出了“振兴中华”的口号——那还是女排叱咤风云之前的事情。而那时候的中国男足也还是一支众望所归的队伍,在容志行、古广明、李富胜等球星的带领下在世界杯亚大(亚洲、大洋洲)区资格赛过程中狠狠地出了一次风头。虽然最后遭到新西兰和沙特阿拉伯的暗算,其功亏一篑的悲壮在中国足球史上也属于空前绝后了。

尽管中国队未能出线,亚大区的赛事还是为1982年的世界杯吊足了胃口。如果没记错的话,那也是中国第一次大规模实况转播这个级别的国际赛事,开创了大学生不分早晚看球的先河。
说是看球,其实能看到的非常有限。那时候的学生宿舍拥挤不堪,大约几百个人才摊得上一座可怜的小黑白电视。学生干部掌管着电视机,或者把它置于室外空地,或者架在走廊角落。无论室内室外,电视机前是一片凳子的海洋,后面的人更是用桌子和凳子叠罗汉,爬到高处颤颤巍巍地伸长着脖子。与其说是在看球,还不如说只是在听前面的人起哄。一有精彩镜头便是一片混乱,欢呼雀跃的与轰然倒地的交相呼应,喝彩声与叫骂声不绝于耳。


虽然看不到多少真正的球艺,世界杯的魅力还是不可阻挡。那时的报纸杂志发了疯似的渲染着著名球队的风格和阵容。在记者天花乱坠的描述中,大家熟悉了巴西的济科、苏格拉底和法尔考,法国的普拉蒂尼和中场铁三角,意大利的佐夫,还有比利时红魔——因为电影《尼罗河上的惨案》而被称之为“比利时小人”。

比赛从一开始就没有辜负大家的期望——那是第三世界第一次崭露头角的世界杯,阿尔及利亚赢了西德,喀麦隆逼平了意大利。然而这两支非洲新秀都还是未能出线。西德与奥地利打了一场和平球挤下了阿尔及利亚;意大利一场未赢,却因为多进过一个球淘汰了同样一场未赢、也一场未输的喀麦隆。

第二轮的比赛安排很是奇特,三个队一组循环厮杀,一个淘汰俩。波兰的博涅克开局就让人们第一次知道了什么叫做“帽子戏法”。但大家关心的还是那支所向披靡的巴西队,这个至今还被人津津乐道的强劲阵容在第一轮中把所谓的“桑巴足球”发挥得淋漓尽致,分别以2比1、4比1、和4比0的比分轻取苏联、苏格兰和新西兰,十个进球几乎都可以进入最佳进球的集锦。


巴西在第二轮与阿根廷分为一组,再加上那个半死不活的意大利。不过后者这时候却有点出乎意料,稀里糊涂地居然先以2比1赢了阿根廷。巴西自然不甘落后,很轻松地也以一个3:1将其宿敌送回了家。巴西和意大利最后相遇,比赛出乎意料地精彩激烈。直到此时还无所建树的意大利神童罗西突然现身,开赛5分钟就头球攻门成功。巴西队不慌不忙,很快就由苏格拉底扳回。好景不长,罗西突然又抢断了巴西后卫漫不经心的横传,轻松地捡到一个便宜。巴西下半场大举反击,由法尔考再度追平。此时大局已定,巴西只要保持平局就可以出线。离终场只有十几分钟时,巴西后卫回传大门有点偏,其门将懒得去扑救,眼睁睁地看着球滚出底线,白送对方一个角球。不肯善罢甘休的罗西立刻发难,利用角球发起后的混乱捅进了最后一球。一刹那间,拥有有史以来最辉煌进攻阵容的巴西队终于败在了她那阿基里斯脚后跟上——防守太不经意。迷人的足球艺术不敌于意大利牛皮糖式的贴身防守。

也许是因为赛前的渲染实在太过分,巴西队的离场似乎已经宣告了1982年世界杯的终结。此时被莫名其妙地称之为“欧洲拉丁派”的法国队凭着她精巧娴熟的中场配合仍然试图接过巴西艺术足球的接力棒。他们在半决赛中与强悍粗鲁的西德队相遇。西德门将舒马赫尔出击时挥拳打落一位法国球员两颗大牙外加脑震荡,为这场比赛奠定了“好人与魔鬼”决战的基调。终场1比1平手后,“好人”法国队在延长期相继两次得手,胜利在握。“魔鬼”西德却死里逃生,奇迹般连续扳回两球,其中鲁梅尼格乱军中竟以脚后跟偷射得手,颇让好人气馁。双方最后互射点球,魔鬼得胜,世道不公也。

另一方面,意大利和罗西则越战越勇,突然表现出世界强队的风采。半决赛2比0淘汰波兰,决赛3比1胜西德,捧得大力神杯。罗西更以独得6球的战绩获得金靴奖,大家更为感兴趣的似乎是报载意大利的商家纷纷慷慨大方,许诺为罗西提供终身享用的皮鞋啤酒等等。还没有真正接触到商业社会的大学生很觉得这匪夷所思。



1982年的世界杯也以其结局宣告了巴西艺术足球的破产。几年后,巴西以一支摒弃了自己的风格的欧洲式队伍出战,才终于重振雄风。国际足联也因为比赛中出现的一些怪现象修改规则:小组赛最后一场比赛必须同时举行,减少和平球的可能;守门员持球时间有了限制,不再能像意大利门将佐夫那样频频在禁区带球“散步”拖延时间。

更重要的是,1982年世界杯为中国人打开了世界职业体育竞技的第一扇窗口,那时候我们还不知道什么曼联、皇马或巴萨。

(2010年6月7日)


怀旧