Tuesday, February 12, 2019

宇宙膨胀背后的故事(之四):察颜观色识星移

赫歇尔的儿子约翰·赫歇尔(John Herschel)在他的父亲和姑姑的影响下也成为一位出色的天文学家,是英国王家天文学会的创始人之一并几次担任会长。他子承父业,也热衷于埋头数天上的星星。在现实世界里,他对新发明的照相术发生了浓厚兴趣,精于照相底片的化学。后来流行的行话“负片”(negative)、“正片”(positive)等便是他的首创。

照相机的发明自然也引起了天文爱好者的躁动。在底片上留下星星的倩影成为19世纪中叶有钱有闲阶层的新挑战。这个刚问世、靠玻璃板上涂抹化学试剂摄影的新技术在捕捉微弱的星光上还真是勉为其难。在长达几小时的连续曝光过程中,硕大的望远镜需要平稳地转动,跟踪正在“斗转星移”的目标。摄影者同时还得像狙击手一样盯着目镜监视,时刻调整以确保目标锁定在十字线的中央。

1840年,美国人约翰·杜雷伯(John Draper)成功地拍摄了第一幅月亮照片。1850年,哈佛天文学家邦德(William Bond)拍出了织女星(Vega)——人类第一张太阳以外的恒星照片。到1860年代后期,玻璃底片完成了从湿版到干版的过渡,不再需要抢在试剂干燥之前完成摄影,曝光时间得以大大加长。1880年,约翰·杜雷伯的儿子亨利·杜雷伯(Henry Draper)拍出了第一张星云照片。


古人看星星,除了它们的位置(即所在的星座),只有很少几个特征可以互相比较:大小、亮度、颜色。在照相技术出现之前,这些都只是肉眼观察、记录的结果,带有很强的主观偏见。飘忽不定的地球大气层对星光的干扰也带来更多的不确定因素。

照片上的影像终于让天文学进入了精确、客观测量的新时代。严谨的天文学家在每幅照片上都会记录曝光时所用的望远镜、时间、角度、天气状况等因素,然后依据既定的公式计算、修正测量出的星星大小和亮度。

更大的突破却是来自颜色。

彩虹是常见的自然景象,曾引得无数文人骚客为之感慨抒怀、浪漫想象。彩虹不只是出现在雨后的斜阳照耀,而是在瀑布、水泡、玻璃折射下都能经常看到。早年物理学家——包括英国的虎克(Robert Hooke)——认为这是因为白光通过这些物体时被染上了颜色。

牛顿不满意这个解释。他在1666年进行了系统的科学实验证明并非如此。他的设计相当简单:在一个棱镜把太阳光分离成斑斓的彩虹后,他让分离出的红光光束再通过另一个棱镜,发现出来的依然只有红光——第二个棱镜没能将红光再染上别的颜色。然后,他又让第一个棱镜分离出的所有颜色的光再通过倒过来的第二个棱镜,发现那七彩的光又重新组合,恢复成了白光。这样,他指出颜色是光本身的属性。棱镜不具备染色的功能,只是在改变不同颜色的光的路径,因此可以分离、重组颜色。
牛顿为他的双棱镜实验手绘的设计草图,这里是演示分离出的红光不会再度被第二个棱镜“染色”。

牛顿相信光束是由微小、肉眼不可见的粒子(corpuscle)组成,这些微粒与其它物体一样遵从他发现的动力学定律。他推测光粒子通过棱镜表面时受到了一种力,因此改变了路径。他假设这个力对所有光粒子是一样的,路径扭曲程度便取决于粒子的质量。因此,他认定红光的微粒质量最大,光路被扭曲的程度最小;而紫光则反之。

当然,牛顿看到的分离出的太阳光与我们日常看到的彩虹一样,是一道从红到紫连续变化的亮色,并没有红光、紫光的界别。他把这个分离——“色散”(dispersion)——出来的连续颜色系列叫做“光谱”(spectrum)。参照乐谱中的音符,他大致地划分出七种颜色,相当于我们今天常说的“赤橙黄绿青蓝紫”。

虽然他的双棱镜实验令人信服地确立了颜色是光的属性,他的“微粒说”解释却很快被抛弃。相继观察到的光的衍射、干涉、偏振现象无法用粒子运动解释,因此微粒说被更早由虎克、惠更斯(Christiaan Huygens)等人提出的“波动说”取代。光束与声音、水面涟漪一样是一种波动,光的不同颜色来源于波动的不同频率:红光的频率最低,波长最大;紫光则频率最高,波长最小。


大约150年之后,德国一个玻璃坊工匠弗劳恩霍夫(Joseph von Fraunhofer)注意到他生产的棱镜产生的光谱中有一些细细、不易察觉的黑线。他精益求精地优化工艺,试图消除这些瑕疵。经过不懈的努力,他制作出当时最优质的玻璃,引领德国超越英国成为世界光学仪器中心。但光谱里的那些小细线却依然如故。

弗劳恩霍夫领悟到这不是玻璃的毛病,而也是来自光本身,因为那些黑线在光谱中的位置——也就是频率——非常固定。他把比较明显的一些黑线用字母顺序标识出来,最引人注目的是黄光区有两条相挨着的粗线:“D-双线”。后来他又把望远镜与棱镜结合起来,可以更清晰地观看太阳的光谱,赫然发现其中居然有成百上千条这样的黑线。由此,他发明了光谱仪(spectroscope)。
1987年德国邮政为纪念弗劳恩霍夫诞辰200周年发行的邮票,用的是他当年描绘的太阳光光谱。

弗劳恩霍夫从小是个孤儿,没有系统地接受过正规教育。但他不仅在玻璃工艺上做出了杰出贡献,还成为光学专家。除了光谱仪,他还根据光波的原理发明了“衍射光栅”(diffraction grating),能比棱镜更有效地分离、辨识光谱。遗憾的是,他39岁时就去世,至死没能明白那些黑线是什么。

30多年后,德国海德堡大学的物理学家基尔霍夫(Gustav Kirchhoff)和化学家本生(Robert Bunsen)合作才揭开了这个谜。

早在唐宋年代,中国人已经制作出烟花焰火,增添节日的喜庆。焰火的原理是一些矿物质在受热后会发出不同颜色的光。基尔霍夫和本生发现这些颜色来自矿物质中含有的化学元素。他们花了很大的工夫提纯,然后用本生发明的“本生灯”(Bunsen burner)逐个加热纯化的元素,用光谱仪观察它们炽热时发出的光。

这时他们看到的不是七彩的彩虹,而只是一条条细细的、明亮的线条。令人惊奇的是每种元素有着自己特定的谱线,犹如可辨认的指纹。尤其是金属钠,加热后有两道亮丽的黄色谱线,恰恰就在弗劳恩霍夫的“D-双线”的位置。

基尔霍夫意识到他们看到的亮线与弗劳恩霍夫发现的暗线其实是同一个现象的两面:前者是元素受热时发射的光,后者则是同一种元素从白光中吸收了同样频率的光后留下的“黑影”。因此,无论是看到亮线还是暗线,光谱仪都可以用来识别该元素。一个晚上,他们从实验室看到远处发生火灾,便好奇地将光谱仪对准那火光。果然,他们在光谱中找到钡、锶等元素的“指纹”,正是起火仓库里存有的货物。
基尔霍夫(左)与本生。

在那之后,众多的科学家便将太阳光谱中那些暗线与地球上观察到的元素“指纹”一一对比,很快辨认出太阳上有氢、氧、碳、钠、铁……等元素,与地球上的相应元素并无二致。当一道黄色谱线找不到对应元素时,他们大胆猜测那来自一个太阳上才有的新元素,以希腊文的“太阳”命名为“氦”。十几年后,氦才在地球上被发现,证实这个元素的存在。

于是,天文爱好者又兴致勃勃地把光谱仪连接到望远镜上,要一举探究恒星的构成。微弱的星光被棱镜色散之后就更难以捕捉。但有了用照相机长期曝光的技术之后,这只是一个耐心和技术的问题。

1863年,在30岁时突然变卖纺织家业而投入天文观测的英国人哈金斯(William Huggins)成功拍摄到第一张恒星的光谱照片。1872年,亨利·杜雷伯拍摄到织女星的吸收谱线。及至1880年代,即使是肉眼看起来模糊不清的星云,也在哈金斯、杜雷伯等人的玻璃底片留下了光谱“指纹”。

很快,哈金斯发现遥远恒星的光谱与太阳光谱大同小异,也就是它们的成分对我们来说都不陌生。他兴奋地宣布:“每个星星闪烁的地方,都有太阳系的化学。”(“The chemistry of the solar system prevailed, wherever a star twinkled.”)也许美中不足的是,他没能像氦那样在外太空发现新的未知元素。


1840年代初,奥地利的多普勒(Christian Doppler)也对星星看上去有不同的颜色很感兴趣。他觉得他明白个中缘由,因为他注意到波的频率并不是绝对的,而是会随着观察者与波源的相对速度改变。

1845年,荷兰气象学家巴洛特(Christophorus Buys Ballot)专门请了一个乐队站在行驶中的敞篷火车上吹号,他在站台上听到了“走调”:火车开过来时号声的音调偏高,离去时则偏低,因此证实了这个“多普勒效应”。如果我们注意倾听行驶中的火车拉响的汽笛,或警车的警笛,也能注意到同样的现象。

多普勒认为光作为与声波类似的一种波,也会有同样的效应。他觉得星星应该是都在发同样的白光,不过有些星可能在运动中。如果它们冲着我们过来,光的频率会像号音走调一样移向高频,看起来就会偏蓝。反之,如果星星离我们远去,它就会显得偏红。

可惜的是他忽略了一个细节:星星的光谱与太阳一样是彩虹般的连续谱,其中频率无论是往高(“蓝移”)还是往低(“红移”)移动,整体的色彩不会有多大变化——如果黄光因为红移变成了橙光,原来的绿光就会同时变成黄光补上。

还是基尔霍夫为星星的色调提供了更合理的解释。他发现,只有本生灯烧出来的炽热稀薄气体才会出现分离的谱线。固体、液体甚至密度高的气体加热后发出的都是连续光谱。在不同温度下,光谱会略有不同。温度低时,红色比较显著,温度高时,蓝色、紫色则更醒目。

自古以来,打铁、烧窑等需要高温的工匠都掌握着一手绝活:看火色——看看火中的颜色就能判断出火候,亦即温度。这招之所以好用,基尔霍夫发现是因为“火色”与火焰中的物质无关而完全由温度决定。他把这种热辐射叫做“黑体辐射”(black-body radiation)。

太阳也是这样一个发光的物体。他根据其光谱判断太阳其实是一个温度达几千摄氏度的大火球。同样,我们观察到遥远的恒星呈现出偏红、偏黄、偏蓝的色彩也是因为它们有着不同的表面温度。


其实多普勒最初的想法也并不完全离谱。虽然从连续的光谱的确看不出运动导致的频移,光谱中的那些细细的谱线(“指纹”)却每根都有着确定的频率位置。因为已经可以确信恒星、太阳都是由与地球上相同的元素组成,我们可以比较同一元素的谱线的频率位置,看看来自恒星的谱线是不是带有多普勒效应带来的红移或蓝移。

哈金斯是第一个发现这样的频移的。

自从罗斯伯爵发现涡旋状的星云、康德提出银河是一个旋转中的大盘子后,恒星位置不恒定,而可能是在运动中这一猜想已经不再骇人听闻。现在,光谱线的多普勒效应不仅能让我们确定它们在运动,还能很简单、精确地计算出它们相对我们运动的速度。(这里所说的运动、速度都是“径向”的,也就是星星沿着我们和它的视线上的运动、速度。有些星星也有“横向”的运动,天文学上叫做“自行”(proper motion)。那种运动没有多普勒效应,只能通过相对于其它恒星背景的视差判断。)

巴洛特很容易就听出了火车上号音的变调。但如果他同时在火车上装置某种颜色的灯来观察光的频移,这个实验却会失败。因为多普勒效应中的频移大小取决于火车速度与波速之比。与光速相比,火车的速度微不足道,不可能观察到多普勒效应。

但哈金斯能看到星星光谱中的多普勒效应,说明星星不仅在运动,而且速度很大,能与光速相比而不可忽略。的确,他估算出御夫星(Capella)的速度达每秒30公里,也就是光速的万分之一。(严格来说,如此高速运动的多普勒效应需要做狭义相对论修正,但爱因斯坦还要再等11年后才出生。)

看看漫天的繁星,想象一下它们正在以非常高的速度“疯狂”地奔波着。我们这个宇宙这是怎么啦?

随着越来越多数据的积累,天文学家很快意识到只有很少的星星或星云——比如那个让马里乌斯纳闷的仙女星云——在朝着我们奔来。绝大多数的星星、星云却似乎都在“义无反顾”地背离我们而去:它们的谱线全都呈现出不同程度的红移。

这就十分地诡异了。


(待续)



Tuesday, January 29, 2019

宇宙膨胀背后的故事(之三):坐井观天看银河

开普勒和牛顿从根本上颠覆了亚里士多德、托勒密以地球为中心的宇宙模型,重新构建了太阳系。太阳和月亮并不是行星,前者是不动的恒星,后者只是地球的一个卫星(也是唯一真的绕地球转的天体)。地球则成了行星之一,与原来已经认定的金木水火土五大行星一样在绕太阳的椭圆轨道上运行。

正如伽利略那不服气的嘟囔:地球在动。她不仅绕着太阳公转,而且还以24小时为周期自转,这样就很简单地解释了人类观察到的满天繁星步调一致的斗转星移。于是,亚里士多德精心设计的那个最外层、镶嵌着所有恒星的转动着的大轮子也就失去了意义:恒星是恒定不动的,是地球在动。

只是,皮之不存,毛将焉附?没有了那个天球做依托,漫天的恒星如何在太空漂浮、分布?牛顿力学只能计算太阳系内诸星体的运动。外面的星星离得太远,几乎完全没有引力的关联。唯一的联系是我们能被动地接收到它们传来的光,也就是看星星。要认识这个宇宙,人类依然只能依靠最原始的手段:观察、思考。

首先会想到的就是,夜空中为什么会有一条明亮的星河?


在希腊神话故事里,众神之王宙斯(Zeus)偷偷让他的私生子、后来的大力神赫拉克勒斯(Heracles)吸食他妻子、女神赫拉(Hera)的奶。赫拉惊醒后把孩子推开,致使乳汁喷洒而出,化为中国人称作银河的“奶路”。(这个故事有着几个不同的版本。)
16世纪意大利画家Tintoretto根据希腊神话创作的油画《银河的起源》(The Origin of the Milky Way)。
现实地看,银河是一条横贯夜空的窄带,在伽利略的望远镜里呈现出很多很多的星星。这条河流似乎在两头的地平线还继续延伸下去,环绕着地球。

1750年,英国的赖特(Thomas Wright)出版了《宇宙的原始理论或新假设》(Original Theory or New Hypothesis of the Universe),做出一个“新假设”。

他把托勒密的模型整个脱胎换骨:宇宙就是一个相对来说很薄的球壳,所有星星包括太阳系都挤在这个球壳之中。因为球壳半径非常大,太阳系所在的局部差不多就是直直的扁平盒子。地球随着太阳系在盒子中间。如果顺着球壳的方向看,那里会有密密麻麻的群星,便是我们所见的银河;如果转往其它方向,能看到的星星便会稀落得多。
赖特绘制的“球壳宇宙”模型。左图是全景,所有星星都在一个球壳里,球心是“上帝之眼”。右图是太阳系附近的球壳放大示意图。地球处于这一段的中心,顺着球壳方向看到的星星密集,便是银河。

赖特当然不可能想到160年后会有一个名叫爱因斯坦的人出来说宇宙是“有限无边”,但他的模型几乎就是爱因斯坦用来做类比的那个二维世界:如果能顺着球壳在星星中穿梭,就会发现一个有限无边的宇宙。

这个模型还让赖特为上帝找到一个比亚里士多德所设计的更好的家:球壳宇宙之外的球心点。上帝已经不再需要通过大轮子推动这个世界运转,他只需占据中心位置,通过那里的“上帝之眼”(Eye of Providence)督查、掌控整个宇宙的命运。

赖特的理论传到欧洲大陆时已经走样,但引起了一个刚刚30出头的德国青年的注意。康德(Immanuel Kant)那时候正在研习牛顿理论和物理世界。他在1755年出版了一本题为《自然通史和天体理论》(Universal Natural History and Theory of the Heavens)的小册子阐述自己的宇宙观。他认为赖特将神学与物理学结合到一起纯粹是画蛇添足:宇宙的结构应该可以完全遵循牛顿力学,不需要上帝的存在。

他也没觉得需要那么个有限无边的球壳。

受赖特模型的启发,康德心目中的银河就是一个延长了无数倍的太阳系:一个里面装着很多星星的大铁饼式的圆盘。就像众行星在同一平面上绕着太阳转一样,这个圆盘也在旋转。与赖特相似,他设想这个盘子面积非常大,但只有一定厚度。我们的太阳系在盘子中心,因此我们看到的夜空有着一道明亮的银河,那就是盘子的边缘方向。


赖特和康德只是在大胆假设,天文学家却需要小心求证。

在伽利略之后,越来越强大的天文望远镜一代又一代地出现。天文学家已经不再是肉眼看星星。与赖特同时代的英国天文学家赫歇尔(William Herschel)拥有着当时最大的望远镜,而且还都是他自己亲手制作的。

赫歇尔出生于德国的一个音乐世家,自己原本也是音乐家。他在34岁时读到一本天文教材后一下子走火入魔,随即荒废了音乐,全身心投入打磨望远镜镜片和夜晚看星星之中。工作起来,他甚至连吃饭时间都不愿意耽误,边干活边让妹妹给他喂食物。(他妹妹卡罗琳·赫歇尔(Carlone Hershel)后来终身未嫁,全心全意为哥哥担任助手,自己也颇有成就。)

功夫不负有心人,赫歇尔几年后在1781年用自制的望远镜发现了天王星,声名大噪,也为自己赢得一份国王亲赐的终身俸禄,可以专心磨制更大的望远镜,看更多的星星。

为了看清宇宙的形状,赫歇尔采取了最质朴的笨方法:数星星。夜复一夜,他把望远镜指向天空的某一个方位,兢兢业业地数着那里能看到的星星、记录它们的亮度。当他把所有的角度都数完后,他得到人类有史以来第一个依据观测数据统计而成的模型:她的确像是康德所说的那样一个扁扁的大盘子,只是不圆,而是不规则形状。
赫歇尔在1785年绘制的银河系形状,其中心那个黑点是太阳系位置。

对赖特、康德、赫歇尔来说,他们研究的既是银河模型也是宇宙模型。二者没有区别,都是太阳系外面的那个世界。今天我们有一个天文术语叫做“星系”(galaxy),这个词来自希腊文的“奶”,与“奶路”源于同一个故事。所以,宇宙、银河、星系那时候都是同义词。

可也正好就是在那个年代,人们开始意识到这三个词可以有不同的含义。


几乎与伽利略同时,曾经在帕多瓦大学与他共事过的德国人马里乌斯(Simon Marius)也在用望远镜观看星空,而且比伽利略更早发现了木星的卫星。伽利略指责马里乌斯剽窃,是科学史上一桩公案。今天,木星那四颗最大的卫星还被统称为“伽利略卫星”,却沿用着马里乌斯依照希腊神话为它们各自起的名字。

他们都发现有些肉眼看上去的单独一颗星在望远镜中其实是由很多密集的小星星构成。但马里乌斯更注意到也还有一个神秘的亮点即使在他的望远镜里也还看不出来其中是什么。

早在公元10世纪,当欧洲依然处于“黑暗的”中世纪时,波斯天文学家苏菲(Abd al-Rahman al-Sufi)对托勒密收集的恒星列表做修正补充,出版了《恒星之书》(Book of Fixed Stars)。他指出在仙女星座(andromeda)中有一个“云一般的点”(cloudlike spot),不像是一颗星,却也不知是什么。马里乌斯就是用他的望远镜看那里,发现还是只能看到一小片模糊的亮光,像是一个燃烧着的蜡烛火苗。

后来因为天文望远镜越来越强大,很多原来看不清楚的星点逐渐能够看出其中的星星,但仙女星座这个“云点”依然模糊如故。为了区分,天文学将能够看出由星星组成的亮点叫做“星团”(star cluster),而那些依然宛如云彩或雾霾的不明物体就被叫做“星云”(nebula)。自然,这神秘莫测的星云立刻就成为大家力图探究的对象。

1781年,法国的梅西耶(Charles Messier)整理出一份列表,上面有已知的100多个星云。他所用的排序一直沿用至今。仙女星云被列为31号,因此被称为“M31”。

赫歇尔使用他世界领先的望远镜,很快就把发现的星云的数目增加到2000多。不仅如此,他还看到星云有着各种各样的形状:有的圆圆,有的扁扁,还有的像彗星拖着尾巴。当他发现一个星云而仔细观察时,往往还会在它附近发现一些原来没注意到的暗淡星云。

虽然还不知道星云究竟是啥,这个发现一度让欧洲的天文学家长松一口气。

圣经《创世纪》开篇叙述道:“上帝说要有光,于是就有了光。……这是第一日。”接下来,一直到第四日,上帝才想起来要创造出太阳以及其它“天上的光体”。

那么,在太阳被创造出来之前,光是哪里来的呢?这个逻辑问题一直困扰着神学界。天文学家发现的这些不是星体却发着光的星云,也许正是上帝造太阳之前所造的光。他们终于可以理直气壮地回应无神论者的这一挑战了。

康德在写他的小册子时已经知道了星云的存在。他正是受其启迪而修改了赖特的宇宙模型,指出银河是一个圆圆扁扁的盘子。不仅如此,他认为银河并不是单一的宇宙。那些星云每一个都是一个与银河类似的宇宙,也与银河一样是扁扁平平的圆盘。它们距离我们非常遥远,故而看上去渺小、昏暗。而因为与我们相对的角度各有不同,它们便呈现出不同的椭圆形状。

康德、赫歇尔的宇宙——或者说银河——不仅有限,而且有边界。赫歇尔还通过自己的测量第一次估算了银河的大小。只是他们的模型说星星在太阳系周围有远有近,我们却无法分辨它们的距离。因为它们都太远,在地球上观察不到视差。

令赫歇尔最为耿耿于怀的是他无法确定那些星云的远近,只能根据看到的形状猜想。当他看到星云那些不同的形状时,他像康德一样认定那是银河外的“天外之天”。但他后来找到一个中间有一颗明亮星星的星云(现在知道那其实是一颗临死的恒星在往外抛射物质)时又立刻改变了主意,认为星云不过是银河内的某种发光气体。这样的气体在万有引力作用下可以逐渐凝聚成如同太阳系这样的结构,也许这正是我们太阳系的来源。


赫歇尔在1822年去世后,他保持的最大望远镜记录很快被更有魄力的下一代年轻人超越。爱尔兰贵族罗斯伯爵(William Parsons, 3rd Earl of Rosse)也是在34岁时突然半路出家,舍弃作为英国议会议员的从政而义无反顾地投入到这个有钱有闲人的新游戏中。1845年,他成功建造一个被称之为怪兽“利维坦”(Leviathan)的庞然大物。这个望远镜口径达1.8米,可以让当地名流戴着高帽子、撑着伞从容地穿过镜筒而助兴。他的目的只有一个:要看到赫歇尔没看到的星云中间的星星——他不相信星云只是银河中的气体。

他没有成功。在他高倍放大的望远镜里,他依然看到星云是一片的光芒。但他看到一个更加惊人的景象:有些星云的形状极其诡异,犹如在急剧转动中的涡旋。
编号“M51”的螺旋星系。左图为罗斯伯爵在1845年根据观测手绘的图,右图为2005年美国航天局用哈勃望远镜拍摄的照片。

罗斯伯爵很小心地描画出他在目镜中看到的图像,在英国王家天文学会做了学术报告。他自己说这实在奇异,这样的星云不可能是静止的,内部一定是在运动中。的确,他的发现是如此地匪夷所思,大多数同行觉得难以置信。因为只有罗斯伯爵拥有这样威力的望远镜,其他人无法独立验证,只能望天兴叹。他们怀疑那是罗斯脑子发昏引起的幻觉,或者他的望远镜存在太大的成像扭曲。

相信他的人则觉得这个发现为康德的主张提供了更扎实的根据:这些星云正是像银河一样是一个个在旋转中的大盘子——也许不是康德的圆盘而更像赫歇尔所画出的银河。他们发明了一个新词叫“岛屿宇宙”(island universes):太空中的星云就如同一个个小岛,每个岛都是自己的一个宇宙。


康德没有再涉足科学研究,而是成了著名的哲学家。当他30多年后写下后来成为他墓志铭的名句(“有两种东西,我们对它们的思考越是深沉和持久,它们所唤起的那种惊奇和敬畏就会越来越大地充溢我们的心灵。这就是繁星密布的苍穹和我心中的道德律。”)时,他自己可能已经忘了当初对“繁星密布的苍穹”曾经有过的猜想。

他所处的年代也正是现代科学终于与哲学、神学相揖而别的时刻。随着天文观测越来越精细,物理学发展越来越成熟,哲学家、神学家即使是在宇宙的大命题上的发言空间也越来越小,直至近乎消失。从赫歇尔之后,没有人还会在宇宙模型中再想着为上帝留下一隅之地。

罗斯伯爵在1867年去世。也就是在那19世纪中叶,天文观测又迎来了两个新的技术突破。天文学家因之可以确切地知道恒星、星云并不是真的恒定不动,而是在运动着的。不仅如此,他们居然还可以非常精确地测量出它们运动的速度。



(待续)



Wednesday, January 16, 2019

宇宙膨胀背后的故事(之二):寻觅宇宙的中心

爱因斯坦的宇宙“有限无边”,处处对称:其中每一个空间点都与其它任何点等价——这个宇宙没有中心。在他之前200来年,牛顿在辩解宇宙不会因为他的万有引力而塌陷时则说过宇宙可以是无限的,没有任何中心能作为塌陷的终点。他们的出发点完全不同,却都自然而然地假设宇宙不存在一个中心。虽然他们的说法都经历了严格的科学质疑,但至少两人都没有因此遭遇科学之外的诘难。

比牛顿再早不过几十年、上百年的伽利略(Galileo Galilei)、哥白尼(Nicolaus Copernicus)等人却没那么幸运。他们仅仅质疑了地球是否是宇宙的中心,便触犯了当时社会主流的条规。因为在那个年代,宇宙的中心不仅是一个事实判断,还更是神学、哲学之信仰。


虽然直到今天还有人顽固地认为地球不是一个球体而是非常宽广的平地(即“地平说”),人类其实很早就领悟、接受了地球不是平的这一事实。古希腊人观察到迎接回港船只时总是先看到来船的桅杆然后才能看到船身、航海的船员知道越往北走北极星在天空的位置会越高,等等。

至迟在公元前350年,亚里士多德(Aristotle)在《论天》(On the Heavens)中便指出月食是因为地球挡住了太阳投向月亮的光(而不是什么“天狗吃月”)。所以,月食时月亮上那个黑影正是地球的投影,是圆的。在人造卫星、宇航员能够直接观看自己家园的两千多年前,人类其实已经用月亮做镜子看到了地球的形状。

亚里士多德之后不久,埃拉托色尼(Eratosthenes)更是利用夏至日正午太阳投影在两个不同维度的城市中的差别测量了地球的大小。他发现地球的周长是那两个城市之间距离的50倍——现代测量的结果是47.9倍。

与地球是圆的类似,也有不少证据表明地球是静止不动的:在地球上生活着的人安然若素,从来没有晕车、晕船那种处于运动环境的反应;我们在地面上跳起、或者往天上高高地抛出皮球,都会直上直下地落在原地:地面没有在腾空时移动;如果没有风吹,空中漂浮着的云彩纹丝不动,不会落在地球的后方……

因此,古希腊的先贤们认识到人类所处的是一个静止不动的圆球,被满天的繁星笼罩着,星星们绕着地球步调一致地缓慢转动(中国人称之为“斗转星移”)。为了辨识这些星星的位置,他们把比较明亮的星星们就近组合成为“星座”(constellation),并以它们的形状加以想象赋予各种形象的名称。

在这个星空背景上,还有太阳、月亮以及几个肉眼可见的星星没有固定的位置,而是在一些特定的星座——所谓“黄道十二宫”(zodiac)——中游走。这些“行走的星”(wandering stars)因此被称作行星。在没有什么测量仪器的古代,这些行星的位置只能用肉眼观察,以其所在的背景星座粗略地描述。

因为地球是圆的并有着一定的大小,在地球表面不同地方、或者在同一地方但不同时间看这些行星,它们背后的星座位置会略有差异。这是因为观察者角度不同,与行星位置的视线会延伸到星空背景的不同方位。这个现象叫做“视差”(parallax)。通过简单的几何关系很容易想象到,被观察的星星离我们越近,所看到的视差会越大。如果知道地球的大小,还可以通过视差角度计算星星离我们的距离。
在地球表面两个不同地点同时观察火星相对背景星空位置的“视差”示意图。

从亚里士多德到公元2世纪的托勒密(Claudius Ptolemaeus),希腊先贤根据这些观察和经验积累,逐渐构造出一个非常具体的宇宙模型:静止不动的地球处于宇宙的中心。行星处于地球外面不同距离的圆形球壳上,由近及远依次为月亮、水星、金星、太阳、火星、木星、土星。在往外则是一个非常大的圆球,上面镶嵌了所有那些不自己游走的星,即恒星。

这个恒星球壳便是宇宙的边界。在它之外也不是虚空,而是人类不可能接触的另一个世界:上帝以及诸神之所在。上帝推动着恒星所在的大圆球,令其每昼夜绕地球转动一周。大球还依次带动其它圆球各自的转动,那就是我们看到的行星的“行走”。

亚里士多德、托勒密的宇宙模型简单明了,通俗易懂。模型中为上帝预留的空间和人类占据宇宙中心的位置也符合上帝造人的逻辑。因此得到广泛的接受。
16世纪葡萄牙人Bartolomeu Velho绘制的托勒密宇宙模型。地球处于中心,往外在圆形轨道上依次是月球、水星、金星、太阳、火星、木星、土星、固定恒星的天球。最外面是“天堂帝国,上帝之所在”。图上还标识着每层轨道和地心的距离和它们的旋转周期。

唯一的缺陷是,即使在没有精确测量的年代,这个模型所描述的行星位置和走向也经常与实际观测不符。托勒密不得不持续加上一系列诸如“均轮”(deferent)、“本轮”(epicycle)再加上“偏心”(eccentric)、“载轮”(equant)的数学手段来修正——或者说拼凑。于是,就像理想的“球形奶牛”突然到处长出好多犄角,原本简洁的模型迅速异化成繁复混乱的大杂烩。


古欧洲的科学、人文在托勒密时代登峰造极,其后却随着中世纪的到来被他们的后代丢弃、遗忘,直到一千多年后的文艺复兴时期才从阿拉伯人保存的译本中重新发现这个宝藏。在那漫长的十几世纪里,伊斯兰科学家做出过一些改进,但托勒密的宇宙模型依然保持着原样。

当16世纪的波兰人哥白尼重新研究托勒密繁复的修正过程时,他很快发现如果改动一下,把行星绕静止的地球运动改为太阳不动,其它行星(包括地球)绕太阳运动,可以大大简化所需要的计算。他指出这样还可以很简单地解释为什么水星和金星永远地离太阳非常近:它们处在离太阳最近的圆球上,从外面圆球上的地球往里看,它们会总是在一起。

哥白尼自己没有观测过行星的位置,也没有新的数据。他只是用托勒密原有的数据,从数学上说明以太阳为中心的计算手段有明显的优势。当然,他也明白从把一个静止、处于宇宙中心的地球转换为太阳中心,而上帝为人类特制的地球只是众多绕太阳转的行星之一会是一个非同小可的思想转变。虽然有当时教皇的鼓励,他对公开发表这个理论依然迟疑不决。他的著作直到死后才问世。

他不可能知道的是,这个简单的数学变换不仅引发了“地心说”与“日心说”旷日持久的争执,而且标志了一场科学革命的到来。


托勒密的宇宙模型成功地预测到1560年8月的一次日食。才13岁的第谷(Tycho Brahe)一方面对如此异常的天象和它的可被预测惊异无比,一方面也因为预测的日期与实际差了一天耿耿于怀,于是迷上了天文。后来,他发明了可以精确测量星星高度的六分仪(sextant)。

1572年,他在仙后星座(cassiopeia)发现了一颗以往没见过的星(现在知道那是一次“超新星”爆发)。他跟踪了几个月,没有发现像月亮所有的视差。因此他断定这颗新出现、后来又消失了的星比月亮远得多,应该处于最外围的恒星球。(在中国的明朝,宰相张居正因为这颗“客星”的出现教导了新登基的万历皇帝应该自省修身。)

然而,亚里士多德曾经信誓旦旦地说月球所在的天球之外是永恒、不变的,不可能突然冒出以前没有的星星来。年轻的第谷用实际的证据推翻了经典。

丹麦国王因此赐给他一座小岛和资金修建一个专业天文台。第谷在那里发明、建造了一系列可以精准测量星星位置的大型六分仪、象限仪(quadrant)等仪器,开创了精确记录行星数据的先河。他还通过测量彗星的位置变化证明这些太阳系的不速之客不但也是来自远方、还由远而近地“穿透”了诸行星所在的那一层层球壳,证明亚里士多德所说的实体球并不存在。
描绘第谷使用他自制的大型墙式象限仪测量星星位置情形的绘图。

1601年,第谷在54岁时“英年早逝”。他的死因一直是科学史上的一个谜,以至于迟至2010年他的遗体还被挖掘出来以现代技术分析是否死于谋杀。

但对于他的同时代人来说,更值得挖掘的是他遗留下来的海量天文数据。第谷自己坚持地心说,也构造过复杂的太阳系模型试图解释这些数据。但他的数据比他的理论更富有说服力。因为它们具备前所未有的精确度,迫使人们不得不正视无论是托勒密还是哥白尼的模型都无法与数据吻合的事实。他的继任开普勒(Johannes Kepler)为此不得不另辟蹊径。

在各种各样的尝试失败后,开普勒终于领悟到第谷的数据说明行星所走的路径是椭圆,而不是从亚里士多德、托勒密到哥白尼、第谷等人一致坚持的圆形。这些前人之所以对标准的圆形情有独钟,除了来自数学、哲学乃至宗教思维上的对称、唯美倾向之外,也有现实的考虑:没有什么实在的东西可以转出一个非圆形的形状。行星可能不依赖任何实体、“漂浮”在虚渺的空间里沿着抽象的“轨道”运动还不是他们所能想象的概念。

开普勒也无法解释、理解这其中的原理。但他发现采取椭圆轨道后,其它种种困难都可以迎刃而解。他陆续总结出后来以他名字命名的“行星轨道三定律”,揭开了整个太阳系的运动规律。


第谷去世三年后,一颗更为明亮的超新星在1604年出现在蛇夫座(ophiuchus),持续三个星期在白天都能看得很清楚。(在那之后,要等到1987年才能再看到类似的超新星。)开普勒和伽利略都对它进行了长期的观测。伽利略当时在意大利帕多瓦大学担任数学教授,因为讲授新星的出现表明亚里士多德体系的错误而与本校的几个哲学教授结下了梁子。但他更大的麻烦还在后面。

早在托勒密时代,人们就知道一定形状的透明晶体、玻璃可以用来制作放大镜、老花眼镜。但直到17世纪初,才有荷兰人想起将两个镜片用圆筒一前一后连接起来,可以观看很远的物体。伽利略在1609年听说后,立刻就自己琢磨着制作出了望远镜(当时叫做“间谍镜”:spyglass)。他把这个对航海价值无比的新发明捐献给当时的威尼斯共和国,因此赢得终身教职,工资也翻了三番。但更重要的是,他同时也把自制的望远镜指向了夜晚的星空。

这一看不打紧,用现代的话说就是“三观尽毁”。

首先,他看到月球的表面坑坑洼洼,完全不是亚里士多德所想象的那种光滑圆润、完美无缺的天体。进而,他发现木星附近还有小星星,从它们不断变化的位置可以推断它们是在环绕着木星转圈,也就是木星有卫星——不是所有星星都在绕地球这个中心转。后来,他又看到了金星像月亮一样有圆缺盈亏,其变化幅度无法与托勒密的地心模型合拍,但可以用哥白尼的日心模型解释。
伽利略描述他看到土星的卫星的笔记。

伽利略不计前嫌,邀请他的老对手来亲眼察看这些奇观,却被拒绝。哲学教授们对自己既有的世界观更为珍惜,只好纷纷做了鸵鸟。科学家则不一样。开普勒收到伽利略送来的望远镜后,很快就证实了他的发现,还自己发明出不同镜片设计的望远镜来。

随着伽利略支持日心说的态度越来越明朗、拥有的证据越来越坚实,他与维护地心说的哲学家、神学家的关系也越来越复杂、紧张。1633年,他在教会面前被迫认错,被判终身软禁。传说他在离开裁判所时,依然嘟囔了一句“可【地球】的确是在动。”("But it does move.")

迟至1979年,教皇保罗二世(John Paul II)才正式为伽利略“平反”。


没有证据表明伽利略曾经在比萨斜塔上投下过不同重量的球做演示。但他的确在比萨大学任职时开创了系统、精确运动学——或科学——实验的先河,并用数据否定了亚里士多德重量与速度关系的谬误。因此,伽利略普遍被认为是物理学——甚至是现代科学——的开山鼻祖。

开普勒的行星定律和伽利略的运动学实验成果后来在牛顿那里得以集大成,以牛顿动力学三定律和万有引力定律奠定经典物理学牢固的根基。太阳成为新的中心,行星——包括地球——因为太阳的引力而围绕太阳在椭圆轨道上运动成为新的科学真理。(牛顿引进的“惯性”概念也解决了地球上的人感觉不到地球在运动中这个难题。)而当牛顿展望整个宇宙,猜测不存在什么中心时,也没有人再去追究他的离经叛道。

伽利略通过他的望远镜还看到了一个人类从来没有见识过的世界:更多更多——“几乎不可思议之多”("an almost inconceivable crowd")——的肉眼无法看见的星星。宇宙比当时任何人想象的还要更大、更丰富。而他的望远镜为人类认识、探索宇宙打开了一个崭新的窗口。

1672年,伽利略逝世三十年后,法国戏剧家莫里哀(Moliere)公演了喜剧《女学究》(The Learned Ladies)。剧中男主角对他的妻子、妹妹和大女儿三名女性不思女红、家务,一味追求科学牢骚满腹。他的抱怨之一是她们在自家楼上装置了一具天文望远镜,要看月亮上在发生什么!

的确,还在那个年代,拥有、使用望远镜进行天文观察,已经成为欧洲上层人物、甚至并不富裕的中产阶层附庸风雅的重要标志。他们所有的,也已经不是伽利略拿在手上的简单直筒,而是占据整个房间,甚至是需要专门修建天文馆式建筑才能容纳的庞然大物。

自然,他们所观看的,也不只是月亮上的变故。人们的视野正投向更高更远,逐渐超越太阳系、银河系,直至宇宙的旷古幽深。


(待续)



Tuesday, January 1, 2019

宇宙膨胀背后的故事(之一):爱因斯坦无中生有的宇宙常数

1907年底,德国的《放射性和电子学年鉴》(Yearbook of Radioactivity and Electronics)编辑邀请瑞士专利局的一位“二级技术专家”(Technical Expert Second Class)撰写一篇关于相对论的年度综述。

当时28岁的爱因斯坦(Albert Einstein)刚刚从“三级技术专家”提升到“二级”,个人生活随着工资的相应上涨而略有改善。但他对写这篇综述文章显然比在专利局中的本职工作更为上心。
在瑞士专利局中工作的爱因斯坦。

狭义相对论这时已经发表两年多了,也已经逐渐被物理学界接受。但爱因斯坦对他自己这个理论的“狭义”始终耿耿于怀。之所以有着这么个定语,是因为她有着两个明显的缺陷。一是不能与牛顿(Isaac Newton)的万有引力和谐:后者的瞬时“超距作用”特性在违反着相对论中作用力传播速度不能超过光速的限制;二是这个理论只适用于匀速运动的“惯性参照系”,无法应用于有加速度的系统。

就在爱因斯坦坐在专利局里纠结如何综述这两个不足之处时,他脑子里突然冒出个思想火花:如果一个人在空中自由落下,他是感觉不到重力的——他处于“失重”状态。还不仅仅是这个人自己的感觉:如果他在下落过程中放开手里的苹果,他也不会看到苹果像牛顿所说的会落下地面,而是会“静止”地停留在他手边。(当然,在旁观者看来,苹果正在和这个人一起落下地面。)

爱因斯坦后来说那是他一辈子所产生的“最快乐的想法”(happiest thought),并由此推论出他著名的“电梯假想试验”:一个处于封闭电梯中的人没有办法知道他的“失重”是因为电梯在坠毁,还是电梯其实是浮游于不存在重力的宇宙空间。反过来,如果这个人感受到重力,他也不可能知道那是因为电梯停在地球表面,还是在没有重力的太空中正加速上升。

于是,重力与加速度并没有区别,只是着眼点不同。因此,狭义相对论的两个缺陷其实是同一个,可以同时解决。在狭义相对论中,时间、距离等概念不再绝对,而是“相对”于所在的参照系。在推广的相对论中,重力——或万有引力——也不再绝对,只是相对于所在的参照系是否加速而存在。

这样,他为年鉴撰写的狭义相对论综述的后面加上一节,成为走向广义相对论的第一座路标。


转眼又是好多年过去了。爱因斯坦早已告别专利局,成为正式的、也越来越著名的物理学家。他对如何推广相对论也有了逐渐清晰的想法:苹果落地、月亮绕地球转等等重力现象其实是因为地球的质量让其附近的空间弯曲了,苹果和月亮只是在弯曲的空间中做惯性运动。而且,不只是苹果、月亮这类“物体”,即使是没有质量的光,也会在大质量附近随着空间而弯曲。

但直到1915年,他在寻求一个完整的理论的征途上还一直是在屡败屡战,不得要领。那年夏天,爱因斯坦去哥廷根大学访问讲学,与那里的数学大师希尔伯特(David Hilbert)切磋。两人都有直觉,广义相对论的数学形式已经几乎触手可及,正等待着那最后的突破。

回到柏林后,爱因斯坦进入近乎癫狂状态。第一次世界大战已经打响,德国实行战时管制,限量供应生活必需品。偏偏此时,他妻子带了两个儿子离家出走,让他一个人在公寓中自生自灭,吃不上一顿可口饭菜。他们为了金钱和孩子不停地在通信中打着笔战。但更让他忧心的是与希尔伯特的持续信件来往,从对方的书信中越来越明显地可以看出来希尔伯特有可能抢先发现、发表广义相对论场方程。

为了不失去优先权,爱因斯坦提前安排11月在普鲁士科学院举行每周一次的学术讲座,“第一时间”发布他的最新进展。11月4日第一讲开始时,他内心里对这个系列的走向其实还十分迷茫。

在讲座之外,爱因斯坦整天除了给夫人、希尔伯特及其它同事朋友写信便是在埋头演算,一次又一次发现、修正自己推导中的错误。终于在11月中,他尝试用正在建构中的新公式推导水星公转轨道近日点进动问题时,一举得到了与牛顿力学不同、而与实际观测几乎理想符合的数值。

这是他的新理论的第一个成功,解决了一个困扰天文学家、物理学家几十年的老问题。已经不那么年轻的爱因斯坦突然兴奋莫名,心慌意乱,竟连续三天没能平静。

11月25日,爱因斯坦在普鲁士科学院做了他的讲座系列的最后一讲。留在黑板上的是一个简洁得难以置信的方程,一个统一了惯性参考系和加速运动的广义相对论场方程。

希尔伯特在哥廷根也同时举行着他自己的系列讲座,并在20日发布了他发现的场方程,比爱因斯坦早了五天。但他没有试图争取发明权。他说,哥廷根的每个人都比爱因斯坦更懂得【广义相对论中所用的】四维时空的数学,但只有爱因斯坦才明白它背后的物理。


爱因斯坦写出的广义相对论场方程是一个看起来直截了当的等式:左边是描述四维时空“形状”的张量,右边则是时空中能量(和质量)、动量的分布。中间那个等号将这两个过去毫无关联的元素联系了起来。方程中没有“力”,却能描述水星绕太阳的公转:因为太阳的质量造成它附近空间的弯曲,而在这弯曲空间中的水星便自然地绕太阳转起了圈——并且比在牛顿力学中转得更为精确。
荷兰布尔哈夫科学博物馆(Museum Boerhaave)东墙上纪念广义相对论的壁画。上面是太阳引力造成光线弯曲的示意图。下面则是广义相对论场方程,其中的第三项便是爱因斯坦无中生有引进的宇宙常数项(“Λ”便是宇宙常数)。

后来,美国的物理学家惠勒(John Wheeler)言简意赅地总结出广义相对论场方程的真谛:“时空告诉物体如何运动,物体告诉时空如何弯曲。”(“Spacetime tells matter how to move; matter tells spacetime how to curve.”)二者相辅相成,浑然一体。


广义相对论发表之后,不仅在水星公转轨道进动的计算上令人信服,更因为光线因为太阳而弯曲的预测在1919年日全食时由英国天文学家爱丁顿(Arthur Eddington)的观测证实而轰动世界,一举奠定爱因斯坦在科学史上的地位。

爱因斯坦一发而不可收拾,进入了十年前他石破天惊地连续发表光电效应、布朗运动、狭义相对论、质量能量之等价那一系列划时代论文的“奇迹年”(Annus Mirabilis)之后的又一次创造性高峰。他的眼光更是超越太阳系,投向更广阔的宇宙:既然“物体告诉时空如何弯曲”,那么只要知道宇宙中的星球质量分布,就可以直接推导出整个宇宙的形状。

在20世纪初,人类对宇宙的格局只有非常朴素的直觉认识。我们所处的太阳系有一个恒星:太阳。围绕着太阳在不同距离的轨道上运行的有包括水星、地球的八个行星(有争议的“第九大行星”冥王星当时尚未被发现),多数行星还各自带有数目不同的卫星。

在太阳系之外,我们可以看到满天的繁星。它们虽然看起来铺天盖地,但并不很匀称:大部分星星似乎集中在相对很窄的一条带子上,就像天空中的一道河流。这在中国叫做“银河”,在西方则称为“奶路”(Milky Way)。在这条河外面的星星分布明显稀疏,有些部位甚至漆黑一片,似乎没有星星。

而这么多的星星,天文学家对它们的距离、质量只有猜测,实际上一无所知。

但爱因斯坦不拘泥这些细节。


一个流传甚广的笑话说一位牧场主因为牛奶产量问题求教于各方专家。经过一番仔细的调查、研究之后,一位理论物理学家找出了应对方案。他自信满满地对牧场主说,“首先,我们必须假设奶牛是一个标准的圆球……”

在遇到未知或无法全面掌握的复杂问题时,将其高度简化、抽象到看起来没有实际意义的简单模型是理论物理学家的拿手好戏。这样研究出来的结果也许无法直接应用,却可以帮助人们理解定性的特质。

爱因斯坦心目中——更确切地说,运算纸上——的宇宙便是这样的一个“球形奶牛”:假设宇宙中的质量是完全理想化的均匀分布,没有哪个地方多一点,也没有哪个地方少一点。让我们来看看新出炉的广义相对论场方程会给出一个什么形状的宇宙。

这个假设虽然听起来匪夷所思,其实也不那么离谱。太阳系看起来结构复杂,但它所有的质量接近99.9%集中在太阳这一个点上。与太阳相比,其它的行星、卫星质量完全可以忽略不计,等于不存在。而在太阳系以外,爱因斯坦觉得宇宙可能比我们肉眼所及还更大得多。在那个大尺度上,也许离我们近的恒星集中在银河也会显得微不足道,遥远的恒星质量分布还是近乎均匀的。

当然,更重要的还是只有这样极端简化了的模型才有可能从广义相对论那数学上极其复杂的场方程中求出一个解来。而即便如此,爱因斯坦也还花费了一年的时间。因为他遇到了一个颇为奇葩的难题。

假设宇宙质量均匀分布之后,整个宇宙的形状便由一个变量决定:密度。爱因斯坦发现他的宇宙不是无限大的,而是有一个由密度决定的大小。但同时因为广义相对论方程中空间和时间是紧密相连的四维时空,这个宇宙大小不是恒定的,而是随时间演变,或者越来越小(塌缩),或者越来越大(膨胀)。无论他怎么折腾,总也找不出一个不随时间变化的、静止的宇宙。

他没有太多地去思考这背后可能隐含的意义,而是认定了这样的解是荒唐、不符合物理现实的。他发明的广义相对论显然并不完整,遗漏了某个能让宇宙稳定的物理性质。

经过反反复复地尝试,爱因斯坦终于找到了缺陷:如果在场方程的左边再另加一项,他就可以得出一个静止的宇宙解。

这个新加的项也是同样的描述时空形状的张量,但附带着一个新的常数作为系数。爱因斯坦把它叫做“宇宙常数”(cosmological constant)。因为这个新加的项只有在研究宇宙这样的大尺度时才有效果。在太阳系这样的“小”尺度上,这个项因为宇宙常数的数值太小而可以忽略不计。这样,他以前计算所得的水星轨道进动、光线因太阳质量弯曲等结果不受影响。
爱因斯坦1917年发表的宇宙学论文首页。
1917年2月,他在普鲁士科学院宣讲了这个新成果,并以《基于广义相对论的宇宙学思考》(Cosmological Considerations in the General Theory of Relativity)为题在院刊上发表了篇幅10页的论文,正式发表了他的宇宙模型。


爱因斯坦所遭遇的困难其实并不是广义相对论带来的新问题。早在牛顿发现万有引力时,他便面临了同样的质问:既然所有质量之间都互相吸引,那么它们必然会逐渐趋近,最终全部“塌缩”到一个点上。因此宇宙不可能稳定。牛顿没有什么好办法。他一厢情愿地辩解道,假如宇宙是无限大的,没有哪个点是中心,也就没法塌缩到任何一个点上。或者,在无限大的宇宙中,每个质量都同时受到来自四面八方的吸引力,互相抵消因此没有实际效用。

这两个论点其实都不成立,因为它们描述的是不稳定系统,无法实际存在。很有一些物理学家一直试图构造不同模型试图解决或者绕开这个问题,均不得要领。事实上,爱因斯坦的论文开篇也是讨论牛顿力学的这个老问题,他指出如果在牛顿的引力场方程中人为引入一个项,至少可以在数学上避免这个困难,但在物理上却没有这样做的理由。

他之所以要提出这个可能,便是为了后面在广义相对论场方程中引入几乎雷同的“宇宙常数”项做铺垫。但即便如此,他也没有能找出在相对论中强加这个附加项的理由。

爱因斯坦自己颇为沮丧。宇宙常数项的引入是完全人为的,破坏了场方程原有的浑然天成之美感。他只能辩解说非如此无法描述我们所在的宇宙,真真是不得已而为之。好在这个项本身没有破坏方程原有的对称性,至少在数学上是可以被允许的。


爱因斯坦的宇宙模型发表后,引人注目的并不是这个只有物理学家才会纳闷的宇宙常数,而是他所描述的宇宙之形状:一个有一定大小的圆球,其半径由宇宙中的质量密度决定。但她又不是我们日常生活中所熟悉的球。爱因斯坦曰,虽然宇宙的大小有限,却没有边界。

宇宙中的质量“告诉”了空间需要弯曲。因为质量均匀分布,宇宙中所有的地方都有着相同的弯曲度。就像一条纸带弯起来首尾相连构成一个环,这个宇宙便弯成了一个标准的圆球——恰如理论物理学家心目中的奶牛。

他说,如果我们能往天上某一个方向打一道有足够能量的光束(那个时代还没有激光的概念),这束光在若干亿年后会从相反方向回到地球,就像麦哲伦(Ferdinand Magellan)的船队完成了环球航行胜利地回到出发的港口一样。

麦哲伦的船队只能在地球表面的海面上航行,他们用3年时间绕地球一圈回到了原地,说明地球表面是一个大小有限而又没有边界的世界。这是三维的地球在其表面这个二维世界的一个投射。

爱因斯坦解释说我们所生存的宇宙圆球其实是一个四维空间中的形状在人类所能感知的三维空间的一个投射。生活在三维空间中的人类无法看到四维宇宙真正的形状,只能感知这么一个有限无边的圆球形投射。

这个匪夷所思的图像不仅让一般人摸不着头脑。即使是物理学家、天文学家也将信将疑,姑且把她称之为“爱因斯坦的宇宙”(Einstein universe)。

但在人类仰望星空几千年,对满天繁星发出过无数的猜想、感慨之后,爱因斯坦是第一个基于物理学原理为整个宇宙构造模型的人。他的这篇论文因此标志了现代宇宙学的诞生。

只是,宇宙究竟有多大、是否有限、是否有边界、是静止还是演变、甚至……真的只有一个宇宙吗?在爱因斯坦所处的时代,这些问题不仅没有答案,甚至无从把握。爱因斯坦的“奶牛”宇宙和他那无中生有的“宇宙常数”只是一个起点,为后续的几代人审视宇宙指出了一个方向。

而要踏实地走上这条路,我们还需要真正地认识我们所在的这个宇宙。


(待续)



Wednesday, August 8, 2018

捕捉引力波背后的故事(之十九):天罗地网捕捉引力波

完成了引力波的结果核查任务后,惠特科姆从加州理工学院退休。他没有离开LIGO大家庭,而是去了印度。早在2009年,那里的物理学家就策划起激光干涉仪。但直到2016年2月17日,印度总理莫迪(Narendra Modi)才借着一星期前发现引力波的轰动宣布原则性地批准这个项目。

印度的干涉仪其实只是LIGO的一个延伸。印度负责选址、基建,LIGO提供仪器设备、技术,双方合作建造LIGO的第三个干涉仪,所有设计都与已有的两个完全相同。因此,这个计划被称作“印度LIGO”(LIGO-India),计划在2024年完工。LIGO一直想在不同的地理位置再建一个探测点。原来希望是在南半球的澳大利亚,但因为当地政府未能提供资金支持而作罢,然后与印度一拍即合。

但这不是亚洲的第一个干涉仪。

早在1997年,日本的物理学家就已经建造成功一个臂长300米的激光干涉仪,是当时世界上的最大号。2010年6月,日本首相菅直人(Naoto Kan)批准了大型干涉仪计划,开始“神冈引力波探测器”(Kamioka Gravitational Wave Detector)的初期施工。这个干涉仪设计臂长只有3千米,更接近于Virgo。为了减少环境噪音影响,整个干涉仪建造于矿山内的地下隧道里。他们还准备将反射镜置于超低温条件下来进一步增强灵敏度和信噪比。神冈干涉仪遭遇了很多工程困难,一再延长工期。他们现在期望在2018年底或2019年完成实验调试,赶上LIGO即将开始的第三轮探测运作(O3)。

日本和印度的这两个干涉仪将填补亚洲的地理空白,在北半球形成美国、欧洲、亚洲的全面覆盖。如果它们能同时测到同一信号,便能大大提高确定辐射源的精确度和速度,有助于更及时地带动“多信使”观测行动。
地球上现有和建设中的引力波干涉仪分布图。
这些还都只是现有干涉仪的补充,因为它们在尺度上没能超越LIGO在利文斯顿和汉福德现有的两个干涉仪。她们那4千米的臂长依然首屈一指。其实,德瑞福设计的法布里—珀罗谐振腔让激光束在长臂两端的反光镜之间来回往返,大约280趟之后才被引入测试区。这样,4千米长的干涉仪“有效臂长”被扩展为1120千米。

这样的技术手段也有局限。保持多次发射的激光束的聚集性能、避免光路之间相互干扰等是对光源、反射镜的非常高的质量要求。为了突破这个瓶颈,欧洲的物理学家已经提出建造臂长达到10千米的下一代干涉仪的方案。这个被命名为“爱因斯坦望远镜”(Einstein Telescope)的计划目前尚处于设计、争取资助的初级阶段。

通过增加臂长来提高灵敏度是理所当然的想法。但实际困难却也随之放大。首先,地球不是平的,而激光却只能走直线。现有的4千米的长臂两端如果一样高,那么一端发出的激光会偏离另一端的目标整整一米。因此,干涉仪长臂的管道高度必须按照地球表面的弧度修正,为施工增加了不少麻烦。10千米的臂长则几乎无法在地球表面实现,只能是像神冈干涉仪那样将整个长臂置放于地下隧道中。

增加臂长不仅是提高灵敏度,而且还能让干涉仪更敏感于低频段的引力波信号。

韦伯当年率先探测引力波时,对引力波可能的来源、频率、强度等一无所知。他并不在乎这些细节,只要能测到就行。但即使是瞎猫,要逮到死老鼠也需要知道频率。因为他的韦伯棒只有在与引力波的频率重合时才能共振。

物理学家习惯用最简单或最极端的情形对未知的参数做一个估算。韦伯也不例外。他推算一个星体如果以光速绕着一个最高密度的星体公转,产生的引力波的频率大概是一万赫兹(Hertz),即每秒钟振荡一万次。这是一个上限的估计,实际引力波频率只会比它低。出于设计、制作韦伯棒的实际考虑,他最终选取的共振频率是1660赫兹。

与韦伯棒不同,干涉仪不靠在单一的频率上的共振探测引力波,而是有一定频率范围的覆盖。韦斯早就知道他的干涉仪最灵敏的频率范围大体与钢琴重合,最敏感的在1000赫兹左右。LIGO探测到的第一个黑洞合并的引力波高峰的频率则出现在约300赫兹。

LIGO“听到”的双星合并是一个仅仅几秒钟的短暂过程,其信号是一个频率越来越高的“啁啾”。在那之前,双星接近过程中一直也都在发射引力波,只是频率太低、强度太弱而没能被干涉仪察觉。如果能大幅加长干涉仪的光臂,使其敏感度更高、能听到的频率更低,就可能更早地捕捉到信号,可以更长久地跟踪观测整个过程。

遗憾的是,地球上的环境噪音干扰也是频率越低强度越高。所以,建造超长的干涉仪不仅存在施工上的困难,还会遭受更强烈的环境噪音影响。低频段的信号与噪音正是爱因斯坦望远镜所期盼的成功和面对的最严峻的考验。

自然,科学家们想到应该可以另辟蹊径,冲出地球。


早在1974年,韦斯在发表激光干涉仪设计的两年后就向科罗拉多大学的班德(Peter Bender)教授提议把干涉仪建造到地球外的太空轨道上去。那里有现成的真空,可以让激光束没有阻挡地直线传输上几百万千米的距离。那里几乎没有环境干扰:没有地震、狂风暴雨、海浪拍岸。除了月球上的吴刚,也没有人会在附近砍树。

班德很感兴趣,做出了原始的设计:发射三个航天器分别进入地球绕太阳的公转轨道上,一起伴随着地球巡天遥看一千河。它们彼此相距几百万千米,形成一个等边三角形。如果在一个航天器上装备激光光源,其光束可以分别发到另外两个航天器上的反射镜上再反射回来,形成一个巨大的航天干涉仪。(韦斯设计的干涉仪中两个光束呈直角,是出于争取最大灵敏度的考虑。等边三角形干涉仪的光束夹角只有60度,牺牲了一定灵敏度。但三个航天器位置对称,每一个都可以既是光源、测量器,又是反射镜,同时构成三个独立的干涉仪。)
在地球环绕太阳轨道上运行的引力波干涉仪LISA设计示意图。
这个雄心不凡的计划开始由美国航天局资助进行早期研究,后来在1990年代由欧洲航天局接手,被命名为“激光干涉仪太空天线”(Laser Interferometer Space Antenna,缩写为LISA,即“丽萨”)。那还是LIGO项目内斗正酣之际,加州理工学院最早跟随德瑞福、沃格特的一些年轻人因为不满巴里什的接管陆续离开LIGO后就近加入了在喷气推进实验室内开始的LISA。LIGO和LISA逐渐形成既合作、又竞争的局面。LISA的人员还曾一度坚信他们会在LIGO之前探测到引力波。

虽然太空具备地球上没有的优势,那里也并不完全平静。航天器时刻经受着太阳光、宇宙射线、碎片等随机碰撞,温度、磁场等随机变化带来的扰动,以及地球、月球及其它行星、甚至偶尔经过的彗星、流星的引力摄动。

LISA的科学家、工程师针对这些因素做出了精益求精的设计,也同时陷入项目资金要求越来越庞大的泥潭。美国航天局尤其摇摆不定,两度退出。好在欧洲航天局一直没有放弃,只是一再要求减小项目的规模以控制预算。LISA因此变成了eLISA(“爱丽萨”)——不断变更中(evolving)的LISA计划。

2015年底,欧洲航天中心终于发射了“丽萨探路者”(LISA Pathfinder)。这个航天器不是干涉仪,而是一个将来可以置放激光器、反射镜的模型,目的是考察是否能够排除太空的环境干扰,实现没有噪音的环境。经过一年半的测试,丽萨探路者取得了十分令人满意的成功,为后续计划坚定了信心。

目前来看,LISA作为完整的干涉仪在太空的实现可能还需要等待十来年。欧美之外,中国也在酝酿着相似的“空间太极计划”(中国科学院)和“天琴计划”(中山大学)。日本也有一个叫做“分赫兹干涉仪引力波天文站”(DECIGO)的类似计划。

如果这些能够顺利上天并成功运作,几百万千米臂长的干涉仪有可能将引力波探测再度推进到一个新的时代。她们超常的灵敏度、对极低频率的“听觉”不再只是捕捉双星碰撞最后一刻的辉煌,而是可以长期地——几年、甚至几十年——跟踪双星逐渐接近的过程。(在这期间,同一个干涉仪在轨道上不同位置持续观测,相当于在相距几亿千米的位置上有不同的干涉仪观测同一信号,可以更有效地定位引力波的来源。)

这样的观测不仅可以进一步验证广义相对论,还能准确地预告双星最后碰撞的时刻和方位,让地球上其它“多信使”观测仪器提前做好准备。也就是说,在可见的未来,人类将在有能力预测地震之前,准确地预测“天震”。



在地球环日轨道上运行的丽萨和她的姐妹们应该能观测到频率低达十分之一赫兹(分赫兹)的引力波。然而宇宙中却应该还有更低频率的引力波存在。天文学家推测在遥远的大星系的中心存在质量巨大的双黑洞,它们的运动发射着频率低达纳赫兹(10^-9赫兹)的引力波,也就是这个波动要30多年才能完成一个周期。或者说,这引力波的波长大于30光年。如此缓慢且微弱的变化是无法用干涉仪探测到的,除非我们能有长达光年尺度的测量仪器。

早在1978年,苏联天文学家便提出可以通过精准观测脉冲星来探测这样的引力波。贝尔当年发现的脉冲星是宇宙中无比精确的时钟,定时给地球送来射电脉冲。脉冲频率越快的越精确。1980年代以来,天文学家已经发现一系列毫秒脉冲星,其自转周期在1毫秒左右(也就是1秒钟内自转600来圈)。如果测量到的脉冲信号不是完全准确,那一定是存在什么干扰效应。正是通过对这种脉冲星信号的精确测量和分析,天文学家在1992年发现了有行星在绕某个脉冲星公转——那是人类第一次发现太阳系之外的行星。

因为脉冲星的电波传到地球的途中会感受到引力波的作用,从不同方向来到地球的电波会感受到同一个低频引力波的作用,就像我们在相距几光年、几十光年的不同地点设置了探测引力波的“浮标”。综合这些毫秒脉冲星信号的变化并排除个体、偶然因素,就应该可以从中看到波长几十光年的引力波。这种观测方式叫做脉冲星定时阵列(Pulsar Timing Array)。这个“阵列”指的是在宇宙空间排列着的一系列脉冲星——如同捕捉引力波的恢恢天网。

2004年,澳大利亚的帕克斯(Parkes)射电天文台率先开始了作为定时阵列的毫秒脉冲星信号测量。随后,欧洲和北美也相继开始了他们独立的观测。因为目标引力波周期之长,至少需要连续搜集几十年的数据才有可能从中找出可能的引力波线索。科学家十分乐观。2016年3月,喷气推进实验室的泰勒(Stephen Taylor)预测未来十年内通过脉冲星定时阵列探测到纳赫兹引力波的可能性有百分之八十。

最后,即使是以光年为尺度的脉冲星定时阵列也无法探测到频率最低的引力波。它——如果确实存在的话——仍然隐藏在宇宙微波背景辐射背后。BICEP2的乌龙式失败固然触目惊心,在科学历史上毕竟只是暂时的挫折。更多、更新的观测结果随时有望再现。也许我们不久就能真正地看到宇宙大爆炸伊始的“原始引力波”,给我们揭示出多重宇宙的秘密。
不同种类引力波的频率范围和相应的探测手段。从左往右:宇宙微波背景辐射中的B模式残留、脉冲星定时阵列、太空轨道上的干涉仪、地球表面的干涉仪。


在回顾引力波的发现时,物理学家舒茨(Bernard Schutz)描述人类一直像一个在密林中探险的聋子。他们四处观望,看到无数的树木、爬藤、野花、小鸟、猿猴等等,体验着一个五彩缤纷的世界,似乎已经很满足了。突然,他的听觉恢复了,立刻仿佛进入了一个全新的世界。他听到了几千米以外大树倒下的轰然回响、密林深处野兽的咆哮。世界不再寂静。

引力波的发现唤醒了我们的“听觉”,宇宙刹那间从绚丽的静止图片变成了活生生的世界。我们听到了黑洞碰撞的轰鸣,看到了双中子星合并时迸发的光彩。经历了最初的多层次感官冲击后,物理学家发现他们还没有满足。

霍金生前输掉的最后一个赌是2012年希格斯玻色子(Higgs boson)的发现——他曾经打赌那不可能做到。在祝贺成功的同时,他也不无遗憾地指出,希格斯粒子的发现让物理学变得没意思了。如果找不到这个粒子,物理学会有趣得多。

霍金没有在引力波探测上打同样的赌,也没有发过类似的感慨——他更得意于引力波验证了他自己当年对黑洞行为的预测,也与其他物理学家一样沉浸于对天文学进入一个崭新时代的憧憬。也许,如果他输了一个引力波的赌,也会流露出同样的失落。

因为引力波和希格斯粒子的发现一样,都“只”是验证了过去已有理论的预测。引力波更为古老,是爱因斯坦在整整一百年前提出的。已有的理论终于得到验证固然令人欣喜,却也“变得没意思”了。因为更令人激动的是现有的理论被实验结果质疑、推翻:意料之外的结果才更能发现新的未知、催生新的突破。

好在引力波不仅是一个发现、一次证实,更是一个新的工具。当天文学走向多信使的新时代时,我们还无法想象会有什么新的发现会出现。借助引力波,我们能够终于听到看不见的暗物质(dark matter)、接触上神秘的暗能量(dark energy)吗?通过对引力波更深入、细致的了解,我们是否能解决广义相对论与量子力学的矛盾,最终实现爱因斯坦统一物理学的梦想?

如果真的到了那么一天,我们应该还会记得,在捕捉引力波的整整一个世纪里,曾有过韦伯、韦斯、索恩、得瑞福、沃格特、巴里什、布拉金斯基、比令、休夫、惠特科姆……,还有过惠勒、费曼、贝尔、赫尔斯、泰勒、韦斯伯格……。他们孜孜不倦锲而不舍的追求,并不只是为了一个终极的结果,而更在于那不断探索、发现、创新的过程。


(完)

主要参考资料

  1. Ripples in Spacetime: Einstein, Gravitational Waves, and the Future of Astronomy, Govert Schilling, Harvard University Press, 2017.
  2. Black Hole Blues and other Songs from Outer Space, Janna Levin, Anchor, 2016. 中译本:《引力波》,胡小锐、万慧译,2017年7月中信出版社出版。
  3. Black Holes and Time Warps: Einstein's Outrageous Legacy, Kip S. Thorne, W. W. Horton & Company, 1995. 中译本:《黑洞与时间弯曲——爱因斯坦的幽灵》,李泳译,1999年湖南科学技术出版社出版。
  4. Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves, Daniel Kennefick, Princeton University Press, 2007.
  5. 加州理工学院“口述历史”档案(包括布拉金斯基、韦斯、索恩、巴里什、惠特科姆等LIGO项目参与者口述回忆)
  6. LIGO官方网站资料


科普

Sunday, July 8, 2018

捕捉引力波背后的故事(之十八):引力波带来的宇宙声光大秀

人类自古便仰望星空,用肉眼观赏、辨识满天的繁星。伽利略(Galileo Galilei)在十七世纪初率先用自制的望远镜指向天体,大大地扩展了视野。麦克斯韦尔之后,物理学家知道光只是电磁波的一部分,在可见光之外还有着精彩的世界:从低能的射电、微波、红外线到高能的紫外线、X射线、伽玛射线,我们的“眼睛”越睁越大,“看到”的越来越多,对宇宙的认识也越来越全面。但直到2015年9月14日之前,我们还仅限于“仰望”,即依赖于电磁波给我们带来的“视觉”信息。

引力波是一个全新的信息载体。与在时空中传播的电磁波不同,引力波是时空本身的脉动。由于这种波动在意象上与在空气中传播的声波有一些类似之处,人们自然地将引力波与声音做类比。正如韦斯当年领悟的那样,LIGO探测到的引力波频率与他酷爱的钢琴乐声重合。在记者会上,他们也将测得的引力波信号直接播放,称之为“黑洞合并时发出的声音”。

于是,“时空乐章”、“引力波涟漪”、“宇宙回响”等与声音有关的华丽辞藻被普遍用来描述引力波的发现。虽然这只是一个类比,但人类确实是打开了一条新的“听觉”渠道:我们不再只是睁眼仰望星空,也能够同时竖起耳朵聆听天籁之音。

这便是沃格特领衔提交给国家科学基金会的申请中引述马基雅维利的诗句所体现的,LIGO的使命是革命性地“引入一个全新的秩序”。赖茨后来在记者会上稍微低调了一点,指出LIGO的成功完成了“天文学从无声电影到有声电影的过渡”。


比令在1989年开始他的引力波探测时曾向同事保证他不会在看到引力波之前死去。2016年时,101岁的比令又聋又瞎,独自住在养老院里。当后辈带着好消息来看望他时,他似乎短暂地恢复了记忆,喃喃道,“啊,引力波。我已经忘记了这么多事情。”一年后,比令去世。

虽然没到那样的高龄,进入老年的布拉金斯基退休后一直与疾病缠斗,同样挣扎着要活到看到引力波的那一天。得愿后不久,他于2016年3月29日辞世,终年84岁。他在莫斯科大学的团队一直是也继续是LIGO的一支主力部队。

德瑞福也在苏格兰的养老院中颐养天年。他已经完全陷入老年痴呆,浑然不知世事。护士将他推到转播LIGO记者会的电视机前时,似乎看到他的昏昏老眼里闪出一丝光亮。2016年9月,索恩在去欧洲领奖时特意绕道到爱丁堡拜访了德瑞福,居然还交谈了良久。德瑞福的弟弟说那是他少有的神志清醒的一天。索恩倍感欣慰地发现德瑞福明白他们已经成功探测到引力波。两个老人贴心叙旧,共同回忆当年为LIGO奋斗的岁月。

2017年3月7日,德瑞福去世,终年85岁。他的家人将其遗产五十万英镑捐献给格拉斯哥大学,设立了德瑞福奖学金,每年资助一名研究生的学业。


LIGO在2015年9月探测到引力波,经过四个多月的核实才在2016年2月11日宣布。这当然是出于他们的谨慎和负责。他们当时不会想到的是,这段拖延无意中为诺贝尔奖委员会解决了一个棘手的难题。

每年诺贝尔奖的提名截止日是1月31日。LIGO正好错过,无缘2016年的诺贝尔奖。在接下来的一年里,LIGO的成就几乎揽括了科学界所有沾得上边的奖(包括中国的“复旦—中植科学奖”和香港的“邵逸夫奖”)。这些奖项的颁奖对象略有不同,基本上都有韦斯和索恩两员主将,有些包括了德瑞福,有些则包括巴里什,还有的干脆颁发给整个团队。

诺贝尔奖比较死板。当初诺贝尔在设立奖金的遗嘱中规定了几个条件,包括获奖者必须是个人、而且是在世的活人,每项奖的获奖者不得超过三人。这两个条件一直被除和平奖以外的奖项顽固地坚持着,即使其它一些“不方便”的条件(比如获奖的应该是当年或最近的工作)早已被束之高阁。

发现引力波的成就应该获得诺贝尔奖是毫无疑问的理所当然。韦斯、索恩、德瑞福、巴里什四个主要角色如何取舍成三名获奖者却是一个人为的困境。在德瑞福去世之前,有些媒体已经提前为巴里什可能的落选鸣不平,认为他力挽狂澜的壮举和项目管理的卓越不应被忽视。

德瑞福的去世大概让诺贝尔奖委员会成员大大地松了一口气。2017年10月3日,他们顺理成章地宣布将当年物理学奖颁发给韦斯、索恩和巴里什三人。为了突出韦斯在干涉仪设计中的原始贡献,他独自获得一半奖金。索恩与巴里什平分另一半。
韦斯、索恩、巴里什(从右到左)荣获2017年诺贝尔物理学奖。


还在LIGO通过记者会向全世界宣布他们的重大发现之前,他们的两个干涉仪已经分别在2015年10月12日、12月26日两次探测到新的引力波信号。因为需要集中精力查证9月的那第一个信号,这些数据被暂时搁置,直到2016年6月15日才公开。10月12日的信号的统计意义比较弱,没有被正式确认为引力波。12月26日那次则被认定为另一例黑洞的合并。这次是两个分别为14.2和7.5太阳质量的“小”黑洞合并。它们距离也远一些,来自14亿光年之距。因为黑洞的质量比较小,LIGO得以观察到两个黑洞相互绕行27圈的“缓慢”旋进。合并后的黑洞有20.8太阳质量,只有0.9太阳质量被转化为引力波。

捕捉到这个信号之后不久,LIGO的第一次测量运行(O1)也于2016年1月19日结束。两个干涉仪关机下线,进行仪器调试改进。O1只持续了短短的四个月,但已经成果斐然。

经过将近一年的离线调试,原来在灵敏度上稍逊一筹的利文斯顿干涉仪有了显著的提高,反超汉福德。后者的灵敏度没能得到进一步改进,却也有了更好的信噪比。2016年11月30日,第二次测量运行(O2)正式开始。不久,他们便又在2017年1月4日、6月8日两次测得新的黑洞合并所发的引力波信号。

2017年8月1日,意大利的aVirgo终于完成了升级,加入探测行列。8月14日,地球上第一次有三个干涉仪同时探测到引力波,实现了对引力波来源的三点定位。(德国的GEO600因为灵敏度不足,迄今尚未探测到任何引力波。)

韦斯当年为LIGO命名时,曾因为这个名称中含有“天文台”的字眼与天文学界发生冲突,不得不解释他们这个项目并不真的是传统意义的天文台。随着这一系列观测结果的持续出现,他们这时倒已经成为一个名副其实的引力波天文台。与此同时,新闻媒体却已经不再有兴趣跟踪报道这些新发现,引力波已经演变为没有新闻价值的家常便饭。

而当年持怀疑、反对态度的天文学家们也早已捐弃前嫌,进入为了人类科学大事业共同合作的新时期。很快,他们也收获了欣喜的回报。


当我们的耳朵突然听到附近意外的声响时,我们会自觉或不自觉地转头观看,试图用眼睛发现这个声响的来源并获取耳朵无法分辨出的更多信息。LIGO很早就认识到,单独用干涉仪倾听引力波并不全面,也需要同时睁开眼睛,细察双星合并的精彩。

凝听宇宙的干涉仪与我们的耳朵还有一个很相似的地方:可以耳听八方。仰躺在地球表面的干涉仪能够听到来自各个方向的引力波(只是不同方向上的灵敏度略有差异)。相反,我们现有的各种光学、射电、X射线、伽玛射线等电磁波望远镜却也与我们的眼睛类似:只有非常有限的视角,只能在对准光源后才能接收到信号。

因此,干涉仪更适合于最初的发现。当他们“听到”信号后,如果可以指挥其它望远镜“转头”寻找来源,则可能“看到”更多、更详细的信息。

1960年代,美国军方发现他们的间谍卫星有时会遭到为时短促的伽玛射线束“攻击”。经过大概十年的研究才确认这个威胁其实来自宇宙空间,非敌方的人类所为。天文学家猜测那是某些大质量星体甚至黑洞爆炸、碰撞等“宇宙事件”的产物,但苦于无法确证。所能作的只是试图获取更多的信息。

1990年代中期,天文学界开始对偶然发生的伽玛射线、X射线爆发事件进行统一协调的多方位、多渠道观测。地球表面和大气层外的人造卫星上的很多具备远程控制功能的望远镜已经实现联网。一旦某个望远镜接收到不明来源的突发性信号,立即会把坐标自动“群发”给其它伙伴。顿时,世界各地以及外空中的上百架望远镜可以一齐指向那个方向,试图捕捉同一事件的伴随信号。

从一开始,LIGO科学合作组织便加入了这个联网,准备利用他们耳听八方的优势帮助天文学家寻找目标。不过,2015年9月14日的第一个发现来得太突然,这些自动协调的机制尚未到位。冈萨蕾斯等人只好亲自打电话通知天文台的朋友,请他们临时“转头”观测,结果一无所获。随后的几次引力波的发现开始了实时引导天文望远镜的观测,也同样地没有成果。

这其实属于意料之中。干涉仪所发现的五次引力波都来自黑洞的碰撞合并,整个过程始终是在黑洞强大的引力场内进行,没有什么物质——包括电磁辐射——可以逃逸。因此除引力波之外并不能指望有其它的信号可以被观测到。(当然,这并不是说天文学家不需要去尝试,因为新的科学发现往往会出现在意料之外。)

当黑洞的合并已经习以为常后,LIGO的科学家翘首以盼的是能够发现中子星的合并。中子星没有黑洞那么强的引力场,其合并过程会伴随着强大的电磁辐射。虽然合并本身的过程极其短暂、发射的引力波脉冲稍纵即逝,但可见光、伽玛线、X射线等往往是在合并时星体物质高速碰撞、被抛射时和之后才发生,因此时间上有一定迟疑,辐射的过程也比较长,正好给地球上的望远镜提供“转头”寻找的时机。

这个机会终于在2017年8月17日出现。也就是三个干涉仪同时发现黑洞合并的三天后,三剑客又同时获得新的信号。与前五次不同的是,这是人类第一次直接探测到双中子星合并的引力波。

这个信号首先到达意大利的Virgo,然后在22毫秒后来到利文斯顿,再3毫秒后通过汉福德。与黑洞合并时探测到的不到一秒钟的脉冲不同,质量小的中子星合并是一个相对缓慢的过程,探测到的引力波信号持续了约100秒。分析表明这是两个质量稍大于太阳的中子星合并,产生了一个2.7太阳质量的新黑洞。这次合并发生在大约1亿3千万光年的距离,相对来说是比较近的。
LIGO公布的2017年8月17日双中子星合并的基本科学数据。

引力波过去1.74秒后,在地球上空轨道上运行的美国费米伽马射线太空望远镜(Fermi Gamma-ray Space Telescope)探测到一组历时约2秒的伽马射线风暴。

LIGO和费米望远镜都及时发出了预警。在他们联合定位的引导下,地球上多个光学观测组在其后的数小时内集中搜寻,在指定范围内发现了一个新的光源,犹如那里短暂地出现了一颗新的星星——那便是双中子星合并后的残余。位置确定后,地球上大约70个不同的望远镜都瞄准了那颗新星,进行射电、红外、可见光、紫外、X射线、伽玛射线的全方位持续观测。

欧洲南半球天文台(European Southern Observatory)的“非常大望远镜”(Very Large Telescope)连续跟踪观测了12天。双星合并之初,可以观测到相对很强的光亮,最明亮的是在从绿光到橙光的可见光频段。随着时间的流逝,总体光强逐渐减弱,最明亮的区域慢慢地移向能量小的红光、红外。11天后,新星消失,不再能观察到。
“非常大望远镜”对2017年8月17日发现的双中子星合并的11天跟踪测量的紫外、可见光、红外(从左往右)频段光谱。横坐标是波长,纵坐标是亮度。曲线上的数字标注合并后的天数。

10月16日,共囊盛举的世界各地天文学家集体对外公开这一次不寻常的观测,同时发表了几十篇论文,从各种角度报告观测的结果。颇具代表性的是一篇题为《双中子星合并的多信使观测》(Multi-messenger Observations of a Binary Neutron Star Merger)的论文,署名有3千多位共同作者,在天文领域属于绝无仅有。

“多信使”一下子成为时髦的新闻用语。这次观测标志着人类摆脱了“仰望星空”的单一依赖电磁波作为信息载体(信使)的局限,在“看”的同时也能“听”到另一个信使——引力波——带来的消息。这是LIGO所带来的又一个划时代的突破。(比较遗憾的是,在电磁波和引力波之外,这次的合并事件中没有接收到相应的中微子束,因此没能实现更全面的多信使观测。这应该是因为合并时中微子的发射方向没有指向地球。)

双中子星合并的引力波与初始的伽玛射线风暴几乎同时抵达地球,证实了广义相对论中引力波以光速传播的预言。(伽玛射线稍微滞后将近2秒,是因为它们发出的时间上有差异。)这也是我们第一次有确切的证据表明过去观测到的短促伽玛射线“攻击”的确来自双中子星合并。

光学望远镜的测量也揭示了诸多从引力波无法“听到”的信息。通过光谱分析可以知道中子星合并时产生了大量铅、金、铂等重金属元素,解决了天文学中一个历时悠久的疑问。物理学家已经知道,通过恒星内部的热核反应,原始的氢元素能够逐级聚变产生氦、碳、氧等元素。但重金属元素的来源一直无法确定。这次的发现令科学家相信,我们地球上——整个宇宙中——的所有金子,以及制造原子弹的铀和钚、日常电器中不可或缺的稀土元素等等,可能绝大部分都来自远古某些双中子星的合并。

天文学进入了一个新的纪元。


2017年8月25日,双中子星合并发现的11天后,运行了近九个月的O2结束了。LIGO的干涉仪再度下线维修、改进。目前我们还不知道下一轮的测量运行(O3)会在什么时候重新启动,又会带来怎样的惊喜。


(待续)



Thursday, July 5, 2018

捕捉引力波背后的故事(之十七):终识引力波真面目

2015年9月25日,亚利桑那州立大学的物理学家克劳斯(Lawrence Krauss)教授在社交媒体推特(twitter)上冷不丁地发出一条消息,说有传言LIGO已经探测到引力波,如果确实的话会很惊人。克劳斯是著名的科普作家,他在推特上拥有近49万粉丝。
克劳斯在2015年9月25日发的推特。
他没有透露消息的来源。


升级版的aLIGO是在2010年安装完毕的。在这场脱胎换骨中,干涉仪内部的所有仪器被全部拆除,改换成更先进的版本。神奇的是,他们如此之大手术却没有破坏干涉仪长臂中那庞大体积内极高的真空。这个真空状态自1998年形成后就一直持续地维持着。LIGO主任赖茨骄傲地总结道:“我们更换了所有的东西,除了没有的东西。”(We changed everything, except for nothing.)

当初的iLIGO在安装完毕后曾经花了十来年才调试到10-21的设计灵敏度。有了那个摸索过程的基础和经验,aLIGO安装完毕后只用了几个月的时间便超过了那个灵敏度。及至2015年9月,两个干涉仪的灵敏度就都达到iLIGO的3倍。这还没有达到aLIGO的设计目标,但已经是很大的改进。

干涉仪的灵敏度也可以反过来用它所能凝听的距离、体积来表示。iLIGO的灵敏度让它能听到大约6千万光年之内的双中子星碰撞所产生的引力波。这时的aLIGO的侦听距离增大了三倍,达到近2亿光年的距离。在三维宇宙中,距离增加3倍,相应体积便增大27倍。在这个扩大的体积内,有着成千上万的星系,其中可能的双中子星数量大大增加。据理论估算,iLIGO可能每十年能观测到一次双中子星合并,而这时的aLIGO已经能在一年中遇到好几次。

因为泰勒和赫尔斯的发现和其后的大规模观测,天文学家已经较清楚地知道双中子星在星系中存在的密度,因此可以有根据地做出这样的估计。但韦斯、索恩、惠特科姆等人却还抱有更大的希望。如果两个黑洞碰撞合并,因为它们的质量比中子星大得多会产生更强烈得多的引力波信号。因此,干涉仪的探测范围还会更大,有可能听到十几亿光年之外的双黑洞碰撞的回响。

在二十一世纪,物理学家对黑洞的存在已经不再怀疑。但黑洞之所以被冠名以“黑”,是因为它们的引力场如此之强,即使以光速运动的电磁辐射也无法逃逸。因此我们没法直接观察到黑洞,只能通过其对周边星球、宇宙物质的引力作用而推测。虽然黑洞的存在本身没有疑问,两个黑洞是否会彼此接近到形成双黑洞,乃至加速接近、碰撞而合并,却依然是个只存在于超级计算机模拟计算之中的壮丽。

在LIGO一帆风顺的同时,Virgo的升级过程却陷入困境,无法按时完成。到2015年秋季,LIGO不再等待Virgo的完工,先行用自己的两个干涉仪进入实际观测。也就是说,干涉仪的运作将从“工程调试运行”(engineering run)转换为实际的“观测运行”(observing run)状态。按照计划,第一个观测运行期(O1)在2015年9月15日那个星期一开始。

9月14日的星期天晚上,两个干涉仪遭遇分别来自太平洋和墨西哥海湾的风暴影响,在试图进入锁定状态时困难重重。在工作人员的持续努力下,汉福德的干涉仪当地半夜时分率先实现了锁定。随后,利文斯顿的干涉仪也在当地临晨4点之前进入了锁定。疲惫无比的工作人员长舒一口气。大部分人回家了,留守值班的也各自找安静的所在休憩。干涉仪自行维持着锁定状态,静静地等待来自宇宙的任何微扰。“O1”开始了。

韦斯正在与家人度假。他那天晚上一直在计算机上远距离关注着进展,这时也听从妻子的劝告上床休息。

大约一小时之后,一丝引力波的涟漪悄无声息地穿过地球,在当地时间4点50分先到达利文斯顿,几毫秒后又经过汉福德(当地时间2点50)。不到一秒钟后,它已经消失得无影无踪。地球上没有人觉察出它的到来和离去,只是两个干涉仪的数据记录中都留下了短暂的一串小脉冲。


欧洲这时是星期一的上午,人们在正常地上班。信号过去4分钟后,在德国汉诺威工作的意大利籍博士后德拉戈(Marco Drago)于当地时间上午11点54分收到一份监控软件自动产生的电子邮件,提示他这个信号的出现。他的第一反应便是这个波形太像引力波了,大概又是一次“人为注入”的演习。
图中顶排是汉福德(左)和利文斯顿(右)干涉仪在2015年9月14日测得的引力波信号。右上图的利文斯顿信号上也重叠了修正时间差的汉福德的数据,显示二者的重合度。第二行的图是去除背景噪音后的观测结果与理论模拟的黑洞合并过程产生引力波的比较。第三行图显示引力波信号中所含的背景噪音部分(上两行数据之差)。最底一行显示引力波频率和强度随时间的演变。
不知是有意还是碰巧,LIGO过去两次有影响的人为注入演习——“秋分”和“大狗”——都发生在9月份。这次很可能又是故伎重演。但德拉戈和他在德国的同事都觉得太过蹊跷。aLIGO的升级刚刚完成,仅仅几小时前才勉强实现锁定。人为注入的演习不可能这么快就能实施。

他们立即向美国的干涉仪控制室打电话询问,那边依然是黎明前的寂静。汉福德那里没人接电话,利文斯顿值班人员说一切正常,他们没有在做什么调试。德拉戈再也按耐不住。他发出一份简短的邮件,提醒LIGO科学合作组织成员他的发现。此时信号刚刚过去一个小时。

惠特科姆早就计划好9月15日从加州理工学院退休。随着aLIGO进入实际观测,他在这里的使命也已基本完成。但他也应诺如果干涉仪探测到有意义的数据,他会回来协助把关,负责随后的检验、核实工作。这天晚上,退休前夕的惠特科姆睡不好觉,早上4点就起来查看邮件。看到德拉戈的信件后,他立即告知妻子:他的退休计划至少在未来几个月里是泡汤了。

接下来的一整天LIGO科学合作组织内部有点人心惶惶,大家都在互相打听是否有过人为注入的演习。只有担任组织发言人的冈萨雷斯(Gabriela Gonzalez)清楚这个答案,因为演习必须由她拍板。她看到德拉戈的邮件时百感交集,知道这非常可能就是他们梦寐以求的天籁之音。

只是她还不能暴露真相,而当务之急却是要立即补救德拉戈捅出的大娄子。一时激动中的德拉戈整个忘了他们预习、操练过的工作程序,他把邮件群发到LIGO内部好几个人员广泛的邮件组。冈萨雷斯作为邮件组的管理人,成功地拦截了德拉戈发给所有人的那一份。但其他邮件组中很多“不相关”人员已经收到了邮件。

9月16日,冈萨雷斯、赖茨与其他几位高层领导联名给整个组织发送了一份措词严肃的信件,提醒大家这个时候最最重要的是严格对外保密,不得提前泄露信息导致误会。

亡羊补牢显然已经晚了。九天后,克劳斯便发出了他的推特。随后,冈萨雷斯的电话被闻风而来的记者打爆。她只能以官腔套话应付,同时在内部颁布禁言令,禁止回应、评论克劳斯的消息或在社交媒体谈论此事。希望克劳斯的捕风捉影能够自生自灭。

在惠特科姆的领导下,负责核查数据的人员已经按照既定程序按部就班地排查地震、飓风、陨石、风暴等等一切可能的随机噪音源。他们果然在国际气候数据库中发现西非的布基纳法索在同一时间有过一次异常强大的雷电袭击。深度数据分析表明该电击事件距离太远,无法震动美国干涉仪的悬镜。

但惠特科姆更为忧虑的是人为的因素:既然他们可以设计出瞒天过海的人为注入手段,难道他们团队中那么多聪明绝顶的年轻人不会有人动同样的心思以促狭?会不会有人离开项目后心存不满而故意捣乱?甚至,有没有可能系统被外面的黑客打入?看到他几乎成为偏执狂的状态,同事安慰他道,如果黑客中真有人能干出这么漂亮的捣蛋,那本身也该值得赢个诺贝尔奖了。

一直到接近年底的三个月后,他们终于确定这个信号的真实。


过去二三十年里,当实验物理学家兢兢业业地设计、制作、调试激光干涉仪时,只擅长“纸上谈兵”的理论物理学家也没有袖手旁观。他们利用威力越来越强的超级计算机对各种可能的引力波源进行了全面、详细的模拟计算。仅仅是两个星球碰撞合并就会有几十万种不同组合:不同质量的黑洞碰撞、不同质量的中子星碰撞、不同质量的黑洞与中子星碰撞、碰撞之前不同的初始条件、碰撞之后合并星球的不同质量、它们与地球距离的不同远近、轨道相对地球的不同角度……每一种情形会产生稍微不同的引力波波形,犹如每个事件有着独特的指纹。他们建造了一个全面的引力波波形数据库,一旦测量到信号便可以按图索骥。

与2015年9月14日测得的信号最符合的是两个黑洞的碰撞,其中一个质量是太阳的36倍,另一个则是29太阳质量。二者合并之后,产生了一个62太阳质量的大黑洞。前后所差(36+29-62)的3个太阳质量便全都被转换为引力波的能量,爆发性地向整个宇宙激荡。测量到的信号与理论预测非常准确的高度契合也为信号的真实性提供了更大的信心。

我们的太阳每秒钟释放的能量是其本身一个太阳质量的一万亿之一的十亿分之二。这“区区”一点能量已经足以为地球上的生物提供合适的光亮和温暖。这次黑洞的合并是三倍于太阳质量的能量在几微秒内的释放,真可谓“惊天动地”。或者说,这个瞬时释放的能量是宇宙中所有恒星发光的能量总和的十倍还多。因此,这也是人类所确知的除了宇宙大爆炸之外最剧烈的能量释放事件。

这两个黑洞质量如此之大,它们碰撞释放的能量如此之强,以至于它们虽然相距地球达13亿光年之远,也被LIGO的激光干涉仪捕捉到了。

LIGO所测到的还不只是那一瞬间的辉煌,而是包括了两个黑洞碰撞前最后的四圈公转,以及合并后新黑洞的身影。虽然这整个过程只持续了大约0.2秒,引力波的波形却提供了一个栩栩如生的图景:信号伊始时,两个黑洞相距大约与它们自身大小5倍的距离,有着三分之一光速的相对速度。它们像交谊舞的舞伴相拥旋转了四圈,在信号中表现为8个近乎标准的周期。这个阶段叫做“旋进”(inspiral),其间黑洞之间距离越来越小、相对速度越来越大,测得的引力波的振幅也随之增大、频率升高,犹如小鸟的啁啾(chirp)。然后,黑洞接近到它们自身大小的距离,相对速度达到接近百分之六十的光速。这时它们轰然合并(merger),引力波的振幅达到最高峰。随后,如同被突然打击了一下的锣鼓,合并之后的大黑洞还会发出一小段急剧减弱引力波信号,叫做“铃宕”(ringdown)过程。最后,一切恢复静寂,仿佛什么也没有发生过。
2015年9月14日汉福德测得的(去除背景噪音后)引力波信号(灰线)与理论计算(红线)的对比。上图显示两个黑洞接近、合并和铃宕的整个过程。下图是相应的两个黑洞之间的距离(黑线,右边坐标轴)和相对速度(绿线,左边坐标轴)。
在宇宙空间以光速传播了15亿年后,这个引力波终于来到地球。她只剩下10^-21级别的微弱荡漾,却依然保留着这些细节供我们回放远古的历史。


LIGO的论文于2016年1月21日送交《物理评论快报》。期刊事先已经得到讯息,接到稿件后立即优先安排同行评议。1月27日,匿名的审稿人便通过了审阅。1月31日,稍经修改后的定稿送达期刊,排定为2月11日正式发表。
发表于《物理评论快报》的发现引力波的论文第一页。
《物理评论快报》是物理学界最为引人注目的科研期刊。作为“快报”,其宗旨是迅速、简洁地发表重大突破性的成果。发表的文章篇幅一般限制在4页之内。LIGO这篇里程碑式的论文显然篇幅过长,共有16页。其中满满5页却全都是作者和所属科研单位的名单——共有1011名作者,代表着16个国家的133个大学、机构。尽管这次探测是在Virgo和GEO600缺席(前者因为升级尚未完成;后者则当时未处于观测状态,也不具备需要的灵敏度)的情况下由LIGO的两个干涉仪独立完成的,论文作者还是根据事先的合作协议包括了所有的有关人员。

出于韦伯的原罪和BICEP2的乌龙,LIGO领导层坚持必须在同行评议通过之后才能公开这个结果。他们同时也知道,随着时间的拖长,保密会越来越困难。2016年1月11日,克劳斯又发出一份推特,声称他有了新的消息源,旁证他三个多月前发的探测到引力波的消息之真实。物理学界也已经沸沸扬扬,消息、传闻、猜测不胫而走。

众人翘首以盼的记者会终于在2016年2月11日召开。《物理评论快报》配合行动,在记者会同时将论文在网站上推出。他们在头天晚上特地将原有的4个网站服务器增加到6个。但几分钟之内还是因为过多的流量而集体宕机。他们不得不临时再增加10个服务器。

赖茨、冈萨雷斯、韦斯、索恩相继在会上介绍了引力波的发现及其意义。赖茨直截了当地宣布,“女士们、先生们:我们已经探测到了引力波。我们做到了!”
2016年2月11日宣布探测到引力波的记者会主席台上:赖茨、冈萨雷斯、韦斯和索恩(从左到右)。
这还不仅是人类第一次直接探测到引力波,而且也是第一次与黑洞最真切的亲密接触。虽然物理学家对黑洞的存在已不再存疑,对它们的了解却还是非常之少。他们猜测宇宙中存在两种不同来源的黑洞:其一是大型星系——比如我们的银河系——的中心存在的巨型黑洞,它们的引力场维系、携带着整个星系在广宇中漫游。另一类则是由大质量的恒星在核燃料耗尽后崩塌而成,是白矮星、中子星的同袍大哥。因为恒星内部热核反应速度与它的大小、质量息息相关,一般认为恒星不可能长得太大。它们塌陷后形成的黑洞应该只是太阳质量的十几倍。

LIGO的第一个实测结果便揭示了29倍、36倍、62倍太阳质量的“大”黑洞的存在,超越了原先的想象。它更第一次证明了黑洞双星体系的存在以及它们碰撞合并的可能,进一步丰富了天文学的认知。

在描述了这些划时代意义的重大发现之后,冈萨雷斯自信地预言,这还只是LIGO干涉仪探测到的第一个信号。今后,他们一定会持续有新的发现。她没有透露的是,其实更多的信号当时已经被探测到,只是尚未通过他们严格的鉴定程序,因此还没到能够公开的时机。


(待续)


科普