Showing posts with label 温伯格(Steven Weinberg). Show all posts
Showing posts with label 温伯格(Steven Weinberg). Show all posts

Tuesday, April 28, 2020

宇宙膨胀背后的故事(卅四):天若有情天亦老

也是2300来年前,诗人屈原仰天长问:“遂古之初,谁传道之?上下未形,何由考之?”

无论是特莱恩、维伦金还是霍金,他们提出的宇宙起源说还都算不上真正的无中生有。因为他们依据的是我们今天所理解的真空涨落、四维时空等物理规律。他们能设想客观世界的有生自无,却无法解释这些自然法则来自何处。在大爆炸那一瞬间的“遂古之初”,谁传来了量子力学之“道”?

2017年2月,《科学美国人》杂志发表了一篇由斯泰恩哈特与人合著的文章,指出暴胀、多重宇宙等现代宇宙学概念无法实际检验,不存在证实或证伪的可能。因此,它已经逾越了科学的范畴,只是无谓的数学、哲学游戏。

几个月后,包括古斯、林德、维伦金、霍金、温伯格等33位著名物理学家联名撰文回应,捍卫暴胀理论。虽然学术界内部分歧从来不是什么秘密,科学家通过联署方式在大众刊物上论战科学问题却也不多见。这凸显了宇宙学擅入“上下未形”之境而遭遇的“何由考之”窘境。(霍金于2018年3月14日去世。他死后才发表的最后一篇学术论文题目是《能顺利地退出永恒暴胀吗?》(A Smooth Exit from Eternal Inflation?)。)

在没有实验可据的情况下,他们也只能依赖自己的直觉。2005年11月的一次学术会议上,主持人问起与会者对多重宇宙究竟能有多大信心。他们可以选择用自己的金鱼、宠物狗、性命打赌。夏玛的另一个学生、担任英国王家天文学家席位的芮斯(Martin Rees)说他勉强可以押上他的狗。林德则大义凛然地赌上了自己的性命。

温伯格知道后,在随后的一次会议上大方地表示他有足够的信心同时押上芮斯的狗和林德的命。


2014年3月的一天,斯坦福大学42岁的助理教授郭兆林(Chao-Lin Kuo)来到66岁、已经在斯坦福任教了20多年的林德的家。郭兆林是有备而来,身后跟着工作人员为这次拜访全程录像。林德夫妇开门时,显然对这个阵势有点惊讶。郭兆林开门见山:我是来给你们一个惊喜:“在0.2有5σ”。也是天文物理学家的林德夫人听到这句暗语式的行话,立刻颤颤巍巍地上前拥抱了郭兆林。林德在后面却颇为迟疑,要求郭兆林重复一遍,再重复一遍。

镜头一转,他们已经在桌前打开了一瓶庆贺的香槟酒。林德眼角含泪地感慨道,30年前订购的东西终于被送到了。但他依然难以置信,希望这确实是真的,而不是被耍了。因为他可能太愿意被耍,因为这会是如此地美丽……

随后的3月17日,郭兆林和他的同行们在哈佛大学举行了一场轰动全球的记者会,正式宣布他们在微波背景辐射中探测到了来自宇宙暴胀时期的引力波信号,第一次获得暴胀的直接证据。古斯、林德还有最早发现微波背景辐射的威尔逊均在前排就座。一时间,“宇宙暴胀”、“多重宇宙”等等科幻式的术语充斥了新闻标题。

2014年3月,古斯(右一)、林德(右二)、威尔逊(左三)与郭兆林(右三)等在记者会后合影。

然而,林德的担心竟一语成谶。他们的确是“被耍了”,郭兆林所在团队测得的信号后来被证明只是宇宙尘埃带来的假象,不真实。(这一事件更详细的来龙去脉,参阅《捕捉引力波背后的故事(十六):南极上空的乌龙》。)

虽然古斯、林德一再坚持宇宙平坦、视界问题的解决早已证实了暴胀。但在30多年后,它迄今依然是个理论,缺乏直接的观测证据。


2019年7月,100来位天文学家又一次在加州海滨聚会。49岁的里斯做了开场演讲。他展示一张图片,上面写着“哈勃常数麻烦?”,其中“麻烦”(tension)被划掉,改为“问题”(problem)。

里斯对这两个描述都不满意。他问听众中的格罗斯(David Gross)应该用哪个字眼。格罗斯回应:“我们不会称之为‘麻烦’或‘问题’,我们会把它叫做‘危机’(crisis)。”

里斯点头,“我们是处于危机之中。”

2019年7月,里斯在做关于哈勃常数测量的学术报告。

这个新的危机其实还是天文学的老大难:哈勃常数的数值。在发现宇宙加速膨胀而获得诺贝尔奖后,里斯又把眼光转到这个最基本的参数。他希望用21世纪的科技手段将测量误差降到百分之一以下,比芙莉德曼十年前的成就再提高一个数量级。

现代的天文学家已经有多种测量哈勃常数的途径。宇宙微波背景辐射中蕴藏着大量早期宇宙的信息可供发掘。普朗克卫星对它做了非常精确的测定。皮布尔斯、虞哲奘以及泽尔多维奇等人在1970年代初提出的一个用“重子声学振荡”(baryon acoustic oscillations)测量早期宇宙遗留大尺度结构方法也已经实现。二者结果高度符合,得出的哈勃常数用天文单位表示都是67.4。

可是,里斯他们对星体距离、速度的测量所得的数值却都在74左右。这两个数字相差只有百分之十。不过几十年前,天文学家还在为哈勃常数在不同的测量中相差两倍以上而伤透脑筋。但这是新的时代,是天文学作为精准科学的21世纪。这两组数据的差异超出了它们各自误差范围的五倍,因而是“麻烦”、“问题”,乃至“危机”。(就在那个会议上,芙莉德曼的团队公布了她们的新结果,哈勃常数是69.8,又差不多是在两组数据的中间。)


格罗斯不是宇宙学家。他研究的是基本粒子理论,也是诺贝尔奖获得者。在那个领域,他早已习惯极其精准的理论预测和验证。所以,他可以毫不留情地把一个百分之十的差异列为“危机”。

然而,在粒子物理与宇宙学合流的半个多世纪后,他们自己也有着一个更为显著的危机:作为暗能量的宇宙常数。

爱因斯坦引进宇宙常数时没有物理根据。他只知道场方程中的这么一个项是广义相对论对称性所允许的,并能让他获得一个恒定不变的宇宙。在宇宙膨胀被发现后,爱丁顿、勒梅特等人都曾劝告爱因斯坦不要轻易舍弃宇宙常数。勒梅特最为执着。他认为既然广义相对论允许该项存在,它应该就是真实的物理。(类似地,盖尔曼后来提出量子力学的“极权原则”(totalitarian principle):凡是不被禁止的都必然会存在。这个原则似乎正好是与“奥卡姆剃刀”(Occam's razor)唱反调。)

因为宇宙常数项在广义相对论中表现为空间本身的性质,与物质无关,勒梅特认为那其实就是量子力学中的真空零点能。的确,真空能与引力相反,表现为空间自身含有、向外扩展的张力。这与宇宙常数、暗能量合丝入扣。

泽尔多维奇在1960年代率先做了量子场论计算,结果大为震惊。量子力学的真空能作为Λ实在太大了,其数值是后来测定的Λ的10120倍!这是一个1后面跟着120个0的大数,是天文学家也没见过的天文数字。

这个“宇宙常数问题”(cosmological constant problem)大概是历史上理论与实际脱节的最糟糕案例。如果有宇宙有那么大的Λ,不仅是如温伯格后来计算的无法有人类生存,宇宙本身压根就不可能存在。

当然,人择原理告诉我们,宇宙并没有被如此巨大的暗能量撕裂。Λ其实很小。泽尔多维奇设想可能还存在尚未发现的物理作用,抵消了量子力学真空能的绝大部分。如果真是这样,这个超大数字上的抵消需要无比精确,才能恰好余下我们所观测的数值。那会是一个比宇宙平坦更为精致、更为惊人的巧合。


戴自海1980年在中国开会、探亲结束回到美国时,好朋友古斯业已功成名就,宇宙暴胀也成为最热火的研究领域。他选择了回避:“既然已经错过了这条船,不如再等下一条更大的船。”这一等就是20来年。其间他作为康奈尔大学的教授,已经成为一个超弦(superstring)理论专家。

大统一理论获得成功之后,物理学家在1980年代开始了新的探索。虽然叫做“大统一”,那个理论只是成功地统一了强、弱、电磁三个相互作用,还无法容纳引力。同时,大统一理论有着50多个无法解释的参数,只能通过与现实世界拟合设定。超弦理论试图弥补这两个大缺陷,完成所有相互作用的统一,并不含有任何可调参数。

那是爱因斯坦生前未能实现的梦想。他在追求统一场论时表示:“我感兴趣的是上帝有没有可能将世界创造成不同的样子。亦即,在必要的简洁逻辑限制下,是否还留有任何自由度?”(“What I am really interested in is whether God could have made the world in a different way; that is, whether the necessity of logical simplicity leaves any freedom at all.”)超弦追求的就是一个不给上帝留下任何自由发挥余地的理论,一个终极、完整、揽括全部客观世界的“万物理论”(theory of everything)。

然而,蹉跎十多年后,超弦理论在1990年代后期也开始异化。原来表达微观粒子的一维的“弦”变成了二维甚至更高维的“膜”(membrane,简称“brane”),所蕴含的自由度也越来越多。以这个模型描述宇宙,在所谓的“超弦景观”(string theory landscape)中能出现10500(1后面跟着500个0!)种不同的宇宙。那是一个超级庞杂的多重宇宙。我们处在、或能处在哪(些)个宇宙无法预测,只能再度诉诸于人择原理。

也是在这个背景下,戴自海在1998年提出宇宙来源于两个膜碰撞的“膜暴胀”(brane inflation)理论,登上了20年前错过的船。2011年,他从康奈尔退休,加盟香港科技大学。


与屈原大致同一时代,相传杞国曾有个人担忧天塌下来、日月星宿坠落而寝食不安。他的聪明朋友告诉他天体只是发光的气,不会掉下来。即使掉下来也砸不死人。于是他就安心了。

相隔半个地球,那时的希腊人也在琢磨天上的星球为什么不掉下来。他们得出的结论是恒星、行星分别固定在绕地球转动的不同球壳上,所以才不会掉下来。

牛顿却发现,天上的星星不掉下来与树上的苹果掉下来其实没有区别,遵从了同样的物理定律。与杞人的朋友、托勒密的天球不同,牛顿的动力学能够可靠地预测未来,故足以“考之”。我们不仅可以提前知道行星的位置、日食月食的发生,还能发现未知的行星。我们还可以从地球上发射飞行器,它们在航行十几年、几十亿公里后能准确无误地出现在天王星、海王星等地球远邻之所在,为我们传回那些天体的精彩照片。

如果杞人活到今天,他也许会欣慰地知道“天”不仅没塌下来,反而还离地越来越远地在升上去,直到会离开我们的视界而消失。

然而,他当初的忧虑也不是完全没有根据。在几乎所有的星系、星系团随着宇宙的加速膨胀远离的同时,与银河同属于“当地星系群”的仙女星系却与我们不离不弃,并因为相互引力的牵拉而逐渐靠近。如果杞人能够看到那个巨大的星系在携带着它那千亿颗恒星越来越快地向我们奔来时,他更会焦虑发狂:天到底还是要塌下来了。

根据模型演算,仙女、银河两大星系,以及近旁的附属小星系,在大约40亿年后会迎头碰撞、合并。无法预测的是那时候还会不会有人类,或其它未知形式的智慧生命体,能亲眼目睹这起身边的特大天文事件。

地球视角的仙女星系与银河碰撞的计算机模拟结果。左上,现在的银河系和仙女星座;右上,20亿年后,仙女星座趋近银河;其余依次:37.5亿年,仙女星座占据一半夜空;38.5亿年,星系碰撞,产生大量新的恒星;39亿年,新的恒星充满夜空;40亿年,两个星系因为互相引力而变形;51亿年,天空出现两个非常明亮的点,分别是两个星系的核心区域;70亿年后,两个星系完成合并,形成一个巨大的椭圆星系。夜空中只剩下一个核心区的明亮。

假如他们能在那场动荡中生存下来,他们会发现自己生活在一个崭新的世界。仙女、银河合并成一个巨大的星系,夜空会比只有银河时更明亮得多。然而,在那个星系之外,宇宙空空如也,一片漆黑。不再有任何其它星系存在,更没有什么背景辐射。

他们中的杞人会发出新的警告:下一轮浩劫又已迫在眉睫。太阳的寿命即将结束,其内核会塌缩而爆炸,地球将在瞬间灰飞烟灭。

也许,这些天文事件犹如森林中倒下的大树,届时已经不再有人能看到它们的壮观、听到它们的轰响。

温伯格在《最初三分钟》的结尾中写道:“宇宙越能被了解,就越显得毫无意义……人类为理解宇宙所作的努力是能让其无聊的生涯略显成就的极少亮点之一,却也赋之于悲剧色彩。”("The more the universe seems comprehensible, the more it also seems pointless.....The effort to understand the universe is one of the very few things that lifts human life a little above the level of farce, and gives it some of the grace of tragedy.")


1990年2月14日,已经在太空独自遨游了12年多的“旅行者1号”(Voyager 1)飞行器即将离开太阳系。它遵从来自地球的指令最后一次蓦然回首,从60亿公里之外为家乡拍摄了一组照片。它目光中的地球只是一个“淡蓝色小点”(pale blue dot,天文学家萨根(Carl Sagan)的描述)。

1990年2月14日,美国航天局宇宙飞船旅行者1号从60亿公里之外拍摄的地球照片。

在宇宙中这么一个不起眼的斑点上,生命还在顽强、旺盛地繁衍。那里曾出现过伽利略、牛顿、爱因斯坦,勒维特、鲁宾、廷斯利,伽莫夫、兹威基、霍伊尔,狄克、皮布尔斯、古斯、林德,勒梅特、哈勃、珀尔马特、里斯……

他们仰望星空,以不懈的努力和理性的逻辑认识、理解了宇宙,从而让我们,作为智慧人类,拥有了这个世界。

爱因斯坦曰,“这个世界永恒的神秘是它的可被认知性……它能够被认知这一事实就是一个奇迹。”(“The eternal mystery of the world is its comprehensibility…The fact that it is comprehensible is a miracle.”)



(完)



Sunday, September 15, 2019

宇宙膨胀背后的故事(十八):磁单极之谜

古斯(Alan Guth)忍着发烧听狄克的讲座时,他尚未真正开始的物理学生涯正面临着夭折的威胁。他到康奈尔已经一年多了。在这之前,他在麻省理工学院博士毕业后已经在普林斯顿和哥伦比亚两个大学各做了3年的博士后。尽管这些牌子在履历上很闪亮,奈何他一直没有引人注目的成果,故没能找到正式教职。因此他在这里依然还是个博士后。他已经31岁,毕业时就结了婚,这时还刚添了一个小儿子。

年轻时的古斯。

他的运气有点背。在研究生和第一个博士后期间,他钻研夸克的相互作用,结果论文刚发表就过时了:同时出现的“量子色动力学”(quantum chromodynamics)解决了那个课题。他搭错了车。

康奈尔当时正热闹着的是威尔逊(Kenneth Wilson)教授发明的“格点规范理论”(lattice gauge theory),用计算机模拟计算夸克相互作用。古斯在这里颇为得心应手,正着手撰写两篇论文,希望能成为教授职位的敲门砖。

他不知道他也正在错过另一列更强劲的车。


尽管世界丰富多彩,物理学家一直相信宇宙的一切——至少在最基本的物理层面——是可以用一个最简单、最优美的“终极理论”(Theory of Everything)描述的。牛顿发现行星绕太阳的公转与熟透的苹果落下地面遵从的是同样的力学和万有引力定律。麦克斯韦(James Clerk Maxwell)则以一组漂亮的方程将电和磁两种相互作用合而为一。

爱因斯坦在晚年孤独地全力以赴,要证明电磁力和引力也能合并成他的“统一场论”(Unified Field Theory)。直到1955年逝世时他依然没能找出头绪。那时,物理学的主流却已经不怎么在乎引力。他们在日益强大的加速器中发现了一个似乎更为五彩缤纷的微观世界。那里引力的作用太弱,完全可以忽略不计。但在电磁力之外,却又出现了两种新的作用力:将夸克等基本粒子约束在一起形成质子、中子的“强相互作用”和原子核衰变中的“弱相互作用”。

就在爱因斯坦去世的前一年,32岁的华裔物理学家杨振宁(Chen Ning Yang)和他在布鲁克海文国家实验室的办公室室友、27岁的米尔斯(Robert Mills)一起提出了“规范场论”(gauge theory)。他们发表的论文很短,不到5页,也没有能解决什么实际问题,却因为其理论的数学形式很吸引人而引起持续的注意。他们把麦克斯韦方程中描述电磁相互作用的对称性推广为一般性的、抽象的“规范对称”,试图以此描述强相互作用,但并没能找到合适的途径。

出乎他们自己的预料,这个后来被称为“杨-米尔斯场”的思想在二十年后突然大放异彩。先是温伯格等人找出了弱相互作用的对称性,在规范场论框架下完成了弱相互作用与电磁相互作用的统一。其后,强相互作用也以古斯曾失之交臂的量子色动力学的形式被成功纳入。

至此,电磁、弱和强三种力实现了统一,构成一个完整的规范场论。虽然引力还依然独自逍遥在外,基本粒子领域的物理学家并不在乎。他们很气魄地把这个新理论直接叫做“大统一理论”(Grand Unified Theory)。

要不是因为他的一个难兄难弟在没完没了地鼓动,专心于自己课题的古斯对身边发生的这一波轰轰烈烈会一直无动于衷。

在中国上海出生、香港长大的戴自海(Henry Tye)与古斯同岁,他们在麻省理工学院有过同一个博士导师。戴自海比古斯晚两年获得学位,也刚来到康奈尔做博士后。他到来之前就已经对大统一理论着了迷,笃信那是基本粒子理论的未来。古斯却不甚以为然。

戴自海。

就在狄克讲座的三天后,戴自海又找到古斯,再次提议两人合作研究大统一理论中的“磁单极”(magnetic monopole)问题。


统一了电和磁的麦克斯韦方程固然优美,却有一个明显的“缺陷”:描述电和磁的部分在方程组中不那么对称、一致。这是因为自然世界中两者存在一个区别:电有正有负,既有带正电的原子核,也有带负电的电子。磁虽然也有南极、北极之分,但所有磁体都同时兼具南北两极,无法分离。即使把一块磁体打碎,每个碎片也都还是同时有着南北极。也就是说,没有单独存在的“南磁荷”或“北磁荷”。如果能有的话,这样的磁荷就叫做磁单极。

电荷与磁单极示意图:磁单极如果存在的话会与单个电荷完全对应。上图从左到右:正电荷(产生电场的电力线往外)、负电荷以及运动中的正电荷产生磁场(B);下图则分别是北磁单极(产生磁场磁力线往外)、南磁单极以及运动中的北磁单极产生电场(E)。

对数学形式上的对称性情有独钟的物理学家猜想磁单极应该也是存在的,只是或者还未被发现,或者只是我们所在的环境不适合。自麦克斯韦所在的19世纪到现在,他们在这上面花费过大量精力寻找、琢磨。古斯在哥伦比亚做博士后时就曾花了三年功夫研究这个东西。

的确,推广了麦克斯韦方程的大统一理论中可以有磁单极的存在。戴自海因此希望能与古斯联手另辟蹊径。古斯兴趣缺缺。因为他已经知道,要“制造”出磁单极,需要达到1017亿电子伏的能量。那时人类最强大的加速器已经能把粒子加速到500亿电子伏,可磁单极依然遥不可及。古斯不愿意在这不切实际的问题上再继续浪费时间。

但戴自海不是想人为制造磁单极。与温伯格一样,他知道人类无法制造出的高能环境都曾经在宇宙之初出现过。所以他是想用大统一理论计算一下,最初的宇宙在高温高压时应该出现过多少磁单极,它们是否有可能遗留到今天。

古斯依然不为所动。他不了解大统一理论,但知道大爆炸的那一刻是理论完全失效的奇点。能产生磁单极的时刻距离这个奇点实在是太近了,这样计算出来的结果多半完全没有物理意义。身为前途未卜的博士后,他不敢贸然造次。

有意思的是,最后说服古斯的不是戴自海,而正是温伯格。

狄克走后半年,温伯格也来康奈尔访问。那时他的《最初三分钟》正红极一时,但他来这里做的讲座完全是学术性的:为什么宇宙中几乎不存在反粒子。

与电子对应着有正电子,与质子对应有反质子……反粒子是我们熟悉的“正常”粒子的“反面”:有着相同的质量、自旋等物理特性,但所带的电荷相反。正反粒子彼此也水火不相容。如果相遇,就会互相湮没,化为无形无质量的能量。好在我们今天的世界几乎完全由正粒子组成,反粒子只在宇宙射线中非常偶然地出现,或者在高能加速器中人为产生,对我们的生存和日常生活不构成威胁。(反粒子最初由英国人狄拉克(Paul Dirac)在1928年做出理论上的预测。加州理工学院的安德森(Carl Anderson)1932年在宇宙射线中发现正电子的轨迹并随后以实验证实其存在。安德森的同学、中国科学家赵忠尧对这个实验有过显著贡献。)

为什么我们会如此幸运?温伯格讲解了大统一理论如何解释这个问题。他的计算表明在宇宙之初——不是“三分钟”的最初,而是在0.0000001秒时——宇宙的温度有10万亿(1013)度。那时候宇宙中只有夸克,正夸克与反夸克的数量大体相同,只略有差异:每300000000个正夸克有299999999个反夸克。在随后的膨胀、冷却中,这些正反夸克互相湮没,基本上完全消失,只留下那剩余的3亿分之一的正夸克,它们主导形成了今天不再有反粒子的世界。

还不仅如此。为了解释这个3亿分之一差异的来源,温伯格又计算了宇宙大爆炸后10-39秒时的情形。那时宇宙的温度约1029度,在那个“稍瞬即逝”的一刻,因为电荷和宇称对称性的破缺(CP violation),正反夸克的数目出现了这么一个微弱的偏差。

听众席中的古斯注意到1029度这个温度,那正是粒子能量处于1017亿电子伏的环境,也就是产生磁单极的契机。他长出一口气。既然温伯格这样的大佬能从容地进行这奇点附近的演算,他自然也可以同样地算算那同一个时刻的磁单极数目。

于是,温伯格刚走,古斯便找到戴自海,索取了有关大统一理论的文献,从头学起。


1017亿电子伏在大统一理论中是一个占有特殊地位的能量点。只有在这里,大统一理论才真正的名至实归:强、弱、电磁这三种行为迥异、互不搭界的作用力在这个能量上合而为一、不分彼此,实实在在地就是同一种作用力。也就是说,如果不考虑引力,宇宙在10-39秒时只存在一种相互作用,也叫做“大统一作用”。

随着宇宙的膨胀,在温度、能量降低后,原有的大统一对称性会发生“自发破缺”(spontaneous symmetry breaking),依次呈现出三种不同的规范对称性,分别相应于今天的三种作用力。

在杨振宁等人发展出规范场论之后,对称性和对称性的自发破缺成为现代物理学举足轻重的基石之一。其实这个概念本身由来已久,在日常生活中也屡见不鲜。【对此更详细的描述请参阅作者七年前写的博文《对称性自发破缺与希格斯粒子》。】

比如液态的水,其中的水分子是随机、均匀分布的。如果把水整体平移一个任意的距离或旋转一个任意的角度,从水分子的分布上看不出有什么变化。因此,水具有空间平移和旋转对称性。但固态的冰就不一样。冰中的水分子几乎固定在特定的晶体结构位置上。如果平移的距离或旋转的角度不是正好与晶格的周期相符,就能看出来冰被挪动了。因此,固态的冰不具有液态水一样的平移、旋转对称性。当水结成冰时,原有的对称性便“破缺”了。结冰的那一刻,所有的水分子必须一致性地自己选取一个晶格位置凝结,就是所谓的“自发”破缺。(当然,日常生活里的水结冰时出现的晶格位置更取决于容器壁、杂质等外在因素的影响,只有在最理想的条件下才会是自发的破缺。)

水在摄氏零度时突然结成冰的过程在物理学中叫做“相变”(phase transition):从液相变成了固相。大统一理论中的大统一对称性随温度降低而自发破缺时,也伴随着类似的相变。正是在这个相变过程中,会有一系列新粒子产生,包括磁单极。

弄清楚这些理论问题之后,古斯和戴自海很快就找到了计算磁单极的途径。他们发现采取不同的模型、假设会得到不同的结果。但无论如何取舍,磁单极的数目都会相当地大。这显然与我们今天找不到磁单极的事实不符。

正当他们还在为这个结果困惑的时候,他们收到了一篇论文稿。温伯格的研究生普雷斯基尔(John Preskill)正巧也做了同样的计算。虽然还只是一个研究生,普雷斯基尔是自己独立地进行了这项研究。论文也是他单独署名,只是在最后的鸣谢中提到导师温伯格的名字。

他的结论与古斯和戴自海的差不多:根据大统一理论,宇宙大爆炸之初应该产生与质子、中子总数相同数量的磁单极。普雷斯基尔还进一步指出,假如果真如此,宇宙大爆炸理论便麻烦了。磁单极的质量巨大,是质子质量的1016倍,它们所产生的引力作用不再能被忽略,会决定性地影响整个宇宙的膨胀过程。如果宇宙在有这么多磁单极的情况下还能膨胀到今天这么大,说明宇宙本身的膨胀速度其实快得惊人。这样的话,我们今天的宇宙不会有140亿年的历史,而是只有1200年!

这个结论显然荒唐。于是,磁单极问题成为大统一理论的一个软肋,也是宇宙大爆炸理论的又一个未解难题。


古斯和戴自海甚是懊恼。两个老资格的博士后居然就这样被一个尚未出茅庐的研究生给抢了先。为了已经付出的努力不至于全部付诸东流,他们只好又竭尽全力试图寻觅一个能在大爆炸过程中避免这个磁单极问题的窍门,好加上一点新内容来发表自己的演算。

功夫不负有心人。在1979年快结束时,古斯在感恩节的长周末加班加点,终于找到一个可能性:磁单极的产生与大统一相变发生的温度、时刻相当敏感。如果相变在大爆炸之后稍晚一点、温度稍低一点时发生,出现的磁单极数目便会大大减少以至于微不足道。

一般而言,水在温度降到摄氏零度时便会发生相变而结冰。但在某些特定的条件下,非常纯净的水也可以进入所谓的“过冷”(supercooling)状态,在零度以下依然保持液态不结冰。条件理想的话,水能这样超冷到零下好几十度。这种过冷的现象在其它相变中也很常见。他们因此设想,如果大统一对称破缺的相变没有在其应该发生的温度实现,而是也过冷了一段时间,延迟到宇宙继续冷却后的稍低温度才发生,便可以绕开磁单极的困境。

虽然他们找不出宇宙之初的大统一相变过程中能发生过冷的理由或机制,但至少他们有了更进一步的成果,足以发表自己的论文了。普雷斯基尔的论文这时已经引起相当的关注。他们听说其他人也正在酝酿这方面的论文,实在不能再让别人抢了先。因此,尽管古斯对这个粗糙的想法并不自信,他们也不得不加紧完成演算,撰写论文发表。

在这一片忙乱中,戴自海突然提醒古斯:如果宇宙真的有过这么一个过冷的延迟相变,会不会对宇宙膨胀的速度本身也带来某种实质性的影响?


(待续)


科普


Tuesday, August 20, 2019

宇宙膨胀背后的故事(十六):于最细微处见浩瀚宇宙

1977年,温伯格在美国出版了一本面向大众的科普书《最初三分钟》(The First Three Minutes),主要介绍宇宙在大爆炸后随即发生的一系列场景。这个引人入胜的标题——书中内容其实并不仅限于那“三分钟”——和新奇、详实的科学内涵吸引了大量读者,成为影响广泛的畅销书。

温伯格所著《最初三分钟》封面设计。

宇宙微波背景的发现又过去了12年。大爆炸这个奇葩的想法不仅在科学界得到广泛认可,成为作为该书副标题的“宇宙起源的现代观点”(A Modern View of the Origin of the Universe),而且也不再是一个简单抽象的猜想,已经发展为坚实的物理理论,并能够在现实世界中得到验证。

作为“外行”的彭齐亚斯和威尔逊发表他们的微波测量结果时,还曾小心翼翼地避免解释他们数据的含义,把这个不讨好的任务交给同时发表诠释性论文的狄克小组。狄克他们也没有提“大爆炸”,而是采用了普林斯顿同事惠勒(John Wheeler)提议的“原始火球”(primordial fireball)的说法。还是《纽约时报》报道时直截了当,大标题为:“信号暗示一个‘大爆炸’宇宙”。(“Signals Imply a ‘Big Bang’ Universe”)。一年后,皮布尔斯开始采用“大爆炸”这个字眼,意味着他们也终于“归顺”了伽莫夫、阿尔弗的宇宙起源理论。

在类星体上遭受重创的稳定态模型本已在苟延残喘,霍伊尔还是竭尽全力负隅顽抗。直到2000年,他(去世前一年)还出版了一本专著维护稳定态宇宙,批驳天文学界随大流接受大爆炸理论的行径。但他已经沦为孤独的绝响:即使是他的老朋友古尔德、邦德都已经接受了大爆炸学说。(1983年,霍伊尔的合作者、美国天文学家福勒(William Fowler)因发现恒星内部产生重元素的过程获得诺贝尔奖。包括福勒自己在内的很多人认为霍伊尔更应该得这个奖,因为该项工作实属霍伊尔首创。对霍伊尔未能获奖的原因有诸多猜测,是诺贝尔奖争议案例之一。)

微波背景辐射的发现是稳定态模型破产、大爆炸理论胜出的决定性事件。数学家埃尔德什(Paul Erdos)曾感叹:上帝犯了两个错误:一是他用大爆炸的方式创造了宇宙;二是他还留下了微波辐射的证据。


温伯格既不是天文学家也不是宇宙学家,而是一个研究基本粒子的理论物理学家。他探索的对象因此是物理学中最微观的世界。由他来描述、解释最宏观的宇宙似乎有点风马牛不相及。然而,这也正是1970年代物理学所特有的一道亮丽风景。

因为,在那最初的“三分钟”里,宇宙其实就是一个基本粒子实验室,高能物理学家的乐园。

伽莫夫年仅24岁时用量子力学的隧道效应解释原子核衰变,随后又推算把粒子加速到一定的动能,就可以突破原子核的壁垒。为此,他协助考克饶夫和沃尔顿发明了第一个粒子加速器。从那个加速器犹如健身房器械的管子里出来的质子成功地打开了锂、铍等原子核。

在我们这个适合人类生存的世界里,实验室里产生的粒子不具备太高的速度,因此需要加速才能击碎原子核。如果换一个环境,比如太阳等恒星的内部,因为温度、压力非常高,那里的粒子本身便带有非常大的动能,不需要人为加速就可以持续核反应。加速器便可以在人类世界中模拟恒星内部的环境。

如果把膨胀、冷却的宇宙回溯到最初,那会是一个即使太阳中心也相形见绌的最极端世界,其中的粒子会具备极高的能量。原子核——或任何有内部结构的粒子——都会在不断的碰撞中解体,回归为最原始的“基本粒子”。于是,伽莫夫按照他当时的认识设想最初的“伊伦”只能由中子组成。

考克饶夫和沃尔顿的在剑桥修建的加速器把质子加速到了具备几万“电子伏”的动能(电子伏是一个高能物理常用的能量单位,是一个电子在一个伏特的电压中加速所获得的动能。)。从动能来看,这些质子相当于来自一个温度高达10亿度的世界,远高于太阳的中心,大体相当于大爆炸之后200秒时的宇宙。

1930年代考克饶夫和沃尔顿设计的粒子加速器。

当爱丁顿绘声绘色地描述他如何在想象中将宇宙的演化“倒带”回放到时间的起点时,他没有想到就在他眼皮底下的几个年轻人所鼓捣着的简陋家伙便在实现这个操作,并且已经接近了宇宙爆炸后的“最初三分钟”。

考克饶夫和沃尔顿的设计很快被美国的劳伦斯(Ernest Lawrence)发明的“回旋加速器”(cyclotron)超越。劳伦斯因此在1939年——比考克饶夫和沃尔顿还早12年——获得诺贝尔奖。回旋加速器具备不需要太大的场地、能源便能够持续加速粒子的优势,在其后几十年中有了飞速的发展。美国布鲁克海文国家实验室在1950年代的回旋加速器就已经可以把粒子加速到30亿电子伏的高能。那相当于是大爆炸之后0.000000003秒、温度为35万亿度的宇宙。

1950年代美国布鲁克海文国家实验室的回旋加速器(Cosmotron)。

越来越大、能量越来越高的加速器揭示出一个崭新、神秘而丰富多彩的微观世界。五花八门的粒子在不同的能量档次上出现、分解,表现出不同的碰撞、反应机理。这些在最小尺度上的知识、数据的积累正好为大尺度的早期宇宙提供了实在的线索:在某个时期的宇宙中翻天覆地的就应该是某个相应能量的加速器中所看到的粒子和它们的反应过程。

1968年,也就是伽莫夫逝世的那一年,斯坦福大学的直线加速器用高能的电子轰击氢原子核,证实质子并不是原来想象的基本粒子,而是由更基本的“夸克”(quark)组成。中子亦然,因此不可能是能存在于“伊伦”中的原始粒子。

1970年代,包括华裔物理学家丁肇中(Samuel Ting)在内的众多高能物理学家利用大型加速器一层层地揭开了微观世界的奥秘,逐渐形成基本粒子的“标准模型”(Standard Model)。正是在这个模型的基础上,温伯格得以“越界”总结、描述宇宙的早期膨胀、演化过程。


勒梅特曾经把他的宇宙蛋所在的时间叫做“没有昨天的那一天”(The Day without Yesterday)。在那一刻,爱丁顿的录像带已经倒到了头,不再有更早的过去。我们不知道——也不可能知道——那时的宇宙确切会是什么样子。因为广义相对论在那一刻出现了数学上的“奇点”(singularity),不再具有物理意义。最多,我们只能泛泛地描述宇宙那时没有空间尺寸,处于时间的零点,而温度、压力、密度都是无穷大。

“原始火球”爆炸后,一个有真实物理意义的世界才开始展开。温伯格在他的书中将爱丁顿倒好的录像带一幕一幕地重放:

大爆炸发生0.01秒后,宇宙的温度高达一千亿度。在那样的“炼狱”中,基本上只存在没有或几乎没有质量的光子、中微子、电子以及它们相应的“反粒子”:反中微子和正电子。这时候的宇宙是一个和睦相处的大家庭,所有粒子胶合成一团,不分彼此,处于完全的热平衡状态。也有极少量(十亿分之一)的质子和中子混在其中,它们不停地被众多的轻子轰击而来回互变,中子甚至没机会自己衰变成质子。

0.12秒时,宇宙的温度随着膨胀冷却到约三百亿度。那些可怜的极少数质子、中子被轰击的程度稍微缓和,部分中子得以衰变成质子。原来数目相同的质子、中子数开始出现差异。质子占62%而中子只有38%。

1.1秒时,温度冷却到一百亿度。和睦的大家庭第一次出现分裂:不爱与他人掺和的中微子退了群(decouple)。这些中微子自顾自地弥漫于宇宙空间,不再与其它粒子交往,形成所谓的“宇宙中微子背景”(cosmic neutrino background),延续至今。(遗憾的是,这一背景的存在还只是理论预测。因为中微子几乎完全不与其它物质发生反应,异乎寻常地难以探测。宇宙中微子背景的能量非常低,更是难上加难,至今依然无法找到这个可以验证大爆炸理论的证据。)

13.83秒时,温度冷却到三十亿度。宇宙中的电子和正电子开始大规模互相碰撞而湮灭,转化为光子。也是在这个时候,伽莫夫描述的“中子俘获”的元素制造过程才得以开始,宇宙中第一次出现氢、氦原子核以及它们的几种同位素。

3分零2秒后,温度冷却到十亿度。电子和正电子湮灭后基本消失,宇宙这时充满了光子和中微子,以及越来越多的氢、氦同位素。因为不再有电子、正电子的持续轰击,还未被“俘获”的自由中子也得以大规模衰变成质子。宇宙中质子、中子的比例出现显著差异:86%的质子对14%的中子。在那之后,所有的中子都被俘获、“封闭”在氢、氦原子核中(原子核内的中子寿命非常长,基本上不会自己衰变)。


温伯格的书名叫做《最初三分钟》。这除了吸引读者眼球外,也因为他觉得宇宙的最初三分钟是最精彩的。那之后宇宙只是惯性地膨胀、冷却,“再没什么有意思的事情发生了”。这个说法也许是出于他对基本粒子物理的情有独钟,但未免夸张。

在最初的狂热过去后,宇宙依然持续地膨胀、冷却着。大爆炸之后五万年左右,宇宙中有质量的粒子开始超越光子、中微子等成为主体力量,引力也开始发挥作用。几十万年之后,宇宙终于冷却到“只有”几千度的“低温”。这时带正电的氢、氦等原子核才能够与带负电的电子持久性的结合,形成稳定、中性的原子。一直与这些带电粒子纠缠不清的光子终于也得以脱身,与那些远古的中微子一样退了群,成为另一道与世无争的宇宙背景。随着宇宙持续的膨胀,这些光子的频率不断地红移,最终会在微波频段被彭齐亚斯和威尔逊意外地发现。

但在地球和地球上的贝尔实验室出现之前,这些光子的频率会先红移到红外线波段。那时整个宇宙不再有可见光,进入所谓“黑暗时代”(Cosmic Dark Age)。(当然,可见光、黑暗这些概念都是以地球人类为主体的描述,而那时候还远远没有人类。)

黑暗时代一直持续到大爆炸二亿年后。这时氢原子在引力作用下形成第一代恒星,内部因压力点燃核聚变而发光、发热。宇宙才再度出现光明。在那之后的几亿年里,宇宙继续膨胀、冷却,恒星聚集成为类星体、星系、超星系等等。恒星内部的核聚变逐级发生后制造出碳、氧、硅、铁等较重的元素,然后在恒星“死亡”之前的超新星爆发中将这些元素抛洒出来。某些恒星坍缩成密度巨大的中子星。它们的碰撞、合并又能制造出铅、金、铂等重金属。

在大爆炸之后大约92亿年,宇宙的某个角落中出现了太阳系。最先出现的是作为恒星的太阳,随后是木星、土星、天王星和海王星,然后才有水星、金星、地球和火星。又过去40多亿年后,地球上出现了人类。他们抬头仰望、低头沉思,从浪漫的想象和原始的敬畏到智慧的认识和逻辑的推理,经过几百年的努力,逐渐发现了宇宙的膨胀、理清了宇宙的来源和头绪。


温伯格等物理学家所描述的这个图景是一个精确、定量的物理过程。它不仅能预测微波背景辐射,而且还能非常准确地解释今天宇宙中各种元素的由来和比例。另一位也以热心科普著名的物理学家克劳斯(Lawrence Krauss)的裤兜里永远地放着这么一张数据卡片。当他遇到对宇宙来源于大爆炸表示怀疑的人时,便会骄傲地拿出卡片引证,说明大爆炸不是空想臆测,而是一个已经被证实的理论。

然而,也正是在1970年代末,当基本粒子和宇宙起源在物理学中趋近辉煌的顶峰时,一丝不苟的物理学家发现他们的大爆炸理论依然有着显著的缺陷,无法解释宇宙膨胀过程中的几个奇诡、顽固的谜点。


(待续)

Monday, May 27, 2019

宇宙膨胀背后的故事(十一):爱因斯坦错在哪里?

1930年1月10日,英国王家天文学会的例会讨论了哈勃的新发现。正在伦敦访问的德西特应邀介绍了最新进展,他坦白地承认自己的宇宙模型中虽然存在红移,却无法解释这个与距离成正比的规律。爱丁顿觉得当时理论界的情形颇为滑稽:“爱因斯坦的宇宙中有物质没运动,德西特的却有运动而没物质。”(“Einstein's universe contains matter but no motion and de Sitter's contains motion but no matter.”)

那时候勒梅特已经证明了德西特的模型并不真的是一个静止的宇宙。因为坐标系的问题,在那个宇宙中任何地点放一个有质量的物体,该物体都会加速向边缘飞去。那便是模型中红移的来源,并非物理实际。因此,爱丁顿以双关语讥讽德西特道:你那模型“没有物质,所以无关紧要”(“as there isn't any matter in it that does not matter.”)

难道就不能有一个既有质量又有运动(红移)的宇宙模型吗?爱丁顿近乎绝望地问道。

那次会议的记录照例发表在学会的通讯上,几个月后传到比利时的勒梅特手中。勒梅特看到后哭笑不得,当即写信给爱丁顿,提醒前导师他在三年前就已经寄送过一篇论文。那篇论文提出的宇宙模型正是既有物质又有运动,并完美地推导出星云的速度距离关系——比哈勃的发现还早了两年!

爱丁顿收到信大为震惊,立刻翻阅故纸堆,找出了那篇论文。不知道当初是没注意还是没看懂,他对那论文毫无印象。出于歉疚,爱丁顿此后花大功夫补救他的疏忽,宣传他昔日弟子的成就。

出于爱丁顿的安排,勒梅特1927年那篇法语论文的英文版于1931年3月在王家天文学会月刊上重新发表。这个三年后的版本虽然大致保持了原貌,也有一些改动。勒梅特补充引用了他原来不知道的弗里德曼论文,老老实实地指出他的理论是弗里德曼的进一步推广。但更突出的是,他省略了关于观测数据中星云的速度与距离成正比关系的整个一节。实诚的勒梅特觉得哈勃这时已经发表了更新、更可靠的数据,没有必要再重炒旧饭。

众多的天文学家只是通过这个英文版才接触到勒梅特的理论。他们不知道有这个删节,因此依旧理所当然地认为哈勃是发现该关系——“哈勃定律”——的第一人。(后期历史学家曾猜测哈勃在翻译过程中插过手以维护他的优先权。这说法并不成立。迟至2018年10月底,国际天文学会全体会员投票,建议将“哈勃定律”正式改名为“哈勃-勒梅特定律”。)

但勒梅特迟到的论文还是有它深刻的影响。作为观测天文学家,哈勃只是从数据中总结了红移的规律。他没有也无力做出进一步的解释。勒梅特正相反,他的规律是从广义相对论中直接推导出来的(然后才找到实际观测数据证实),对数据有一个革命性的诠释:我们看到星云巨大的红移,不是来自星云本身的速度,而是宇宙空间的膨胀。星云只是被动地由所处的空间带着走,就像流动着水面上的浮漂,或者膨胀气球表面上画着的斑点。

即使是熟谙相对论的物理学家一时也无法接受如此怪异的观念。在洛杉矶,到哈勃的家里来的不再只是好莱坞的明星。每两星期,一群从威尔逊山和附近加州理工学院来的天文学家、物理学家甚至数学家也会定期聚集,围着一块小黑板抽烟、争论,嘟囔着很多格蕾丝不懂的名词术语。作为主妇,她默默地为他们准备好酒品、饮料和三明治。

这些人中有的认为星云是在不变的空间中做随机运动,只是碰巧速度大的星云现在已经跑得离我们很远,才让我们有越远的星云速度越快的错觉;有人则觉得远方的星光来到我们地球的一路上大概经历了更多的散射干扰、逐渐失去能量才表现出红移……

哈勃静静地听着。他无法加入这类理论性的探讨,只是集中注意力试图听到某种可以通过观测数据来确证某个理论是否正确的可能性——那才会是他的用武之地。在内心里,他也无法理解勒梅特的空间膨胀理论。终其一生,他一直倾向于相信他看到的是星云本身——而不是空间——的运动。


1930年11月,爱因斯坦与他的第二任妻子、表姐加堂姐(再从姐)艾尔莎(Elsa Einstein)及秘书、助手一行四人乘坐一艘由一战时的战舰改装的豪华邮轮渡过大西洋来到美国。这是他第二次访问美国。但这次他们只在纽约稍事停留,便继续乘船南下,循通航仅十来年的巴拿马运河进入太平洋,然后又顺海岸北上,于那年12月31日到达圣地亚哥。在长达四小时的盛大欢迎仪式后,爱因斯坦第一次踏足美国西海岸。

他是应加州理工学院的邀请来这里进行为期两个月的学术访问。除了阳光、海滩,这里有他慕名的物理学家迈克尔逊和密里根。自然,他也对邻近威尔逊山上正在颠覆他的宇宙论的哈勃满怀好奇。
1931年,爱因斯坦(右三)参观威尔逊山天文台图书馆。左一、左二分别为胡马森和哈勃;左四是迈克尔逊。

爱因斯坦当时也才51岁,有了为人熟悉的那一头飘逸的乱发,只是还没有完全变白。但他已经是世界上首屈一指的物理学家、科学家,大众媒体追逐的明星。他观看了当地的新年玫瑰游行,欣赏了在德国被禁的反战电影《西线无战事》(All Quiet on the Western Front),还出席了卓别林《城市之光》(City Lights)的首映式。当他们穿着正式的燕尾礼服,在观众掌声中一起步入影院时,卓别林感慨道,“他们欢呼我是因为他们明白我;他们欢呼你,却是因为没有人能懂你。”

哈勃的夫人格蕾丝义不容辞地担任起接待爱因斯坦的职责。一次她开车带爱因斯坦出门时,爱因斯坦专门对她夸道,“你丈夫的工作非常漂亮,他很能干。”

1931年1月29日,爱因斯坦与哈勃一起乘车登上威尔逊山。好莱坞的新生代导演卡普拉(Frank Capra)亲自掌镜,为他们全程拍摄纪录片。在山上,爱因斯坦像孩子一般对各个庞大的望远镜爱不释手、流连忘返。他们最后才来到胡克望远镜跟前。当工作人员无比自豪地介绍这个大家伙如何能发现宇宙的大小和状态时,倒是艾尔莎淡定地评论:我丈夫只需要一张旧信封的背面就够了。
1931年,爱因斯坦(左)在威尔逊天文台观赏胡克望远镜。哈勃(中)和天文台台长亚当斯(Walter Adams)陪同。

几天后,爱因斯坦又在洛杉矶为当地的天文学家、物理学家举办了一个学术讲座。他开门见山地承认,基于哈勃等人的发现,宇宙大小不恒定,的确是在膨胀。他解释说,14年前他在广义相对论场方程中引进了那个“宇宙常数”项只有一个目的,就是要找一个恒定不变的宇宙解。现在看来是画蛇添足,完全没有必要。

于是,哈勃在媒体上又获得一个桂冠:“让爱因斯坦改变了主意的人”。


几乎所有科学历史的书籍、文章都会提到爱因斯坦曾抱怨引入宇宙常数是他“一辈子最大的失误”(biggest blunder of his life)。不少作者更一厢情愿地设想如果爱因斯坦当初没有仓促行事,而是更相信他自己的方程并预测宇宙膨胀,该会是多么地辉煌。

这两个说法都没有证据支持。

前一个说法来自宇宙学家、科普作家伽莫夫(George Gamow)的描述,没有任何旁证。天体物理学家、作家利维奥(Mario Livio)为这个“最大的失误”来源做了细致的调查和分析,可以肯定那是伽莫夫出于戏剧性的凭空编造。

爱因斯坦在他那篇1917年原始论文中便明确说明宇宙常数项只是为得到一个静止的宇宙而引入,其前提是广义相对论场方程允许这样一个项的存在,因此有可能是真实的。他的确一直为此惴惴不安,只是因为这个项没有在场方程中自然出现,需要人为引入,破坏了他所追求的美学意义上的简单性。当静止宇宙这个要求不再必要时,爱因斯坦轻易地就舍弃了这个多此一举,也并没有觉得当初的引入曾是多大的失误。

的确,爱因斯坦之所以引进宇宙常数项,并不是为了遏止或防止宇宙膨胀,而是恰恰相反。他看到的是他那个宇宙模型会在引力影响下塌缩,因此需要一个平衡因素。那是一个从牛顿开始就已经意识到的老问题,与后来勒梅特发现的宇宙膨胀没有关系。即使爱因斯坦对他自己的理论充满信心,他最多只会无奈地指出他的广义相对论宇宙与牛顿力学的宇宙一样最后会塌缩到一个点。

因此,即使是在弗里德曼发现爱因斯坦的方程中包含宇宙大小可以随时间有不同的变化方式——既可以塌缩也可以膨胀——时,爱因斯坦也没有“恍然大悟”。他先验地认定弗里德曼的推导出了错,被纠正后依旧不以为然,觉得弗里德曼的解“不具备物理意义”。

及至勒梅特给出更详细的数学理论,并辅以实际观测的光谱数据来证明宇宙的膨胀时,爱因斯坦依然只是学霸式地将之贬为“物理直觉糟糕透顶”。

其实,在这个问题上物理直觉糟糕的恰恰是爱因斯坦自己。


宇宙在大尺度上是恒定、静止的,是人类千年的直观经验。在确凿的光谱红移数据出现之前,以此作为宇宙理论的前提几乎是理所当然。然而,爱因斯坦的错误却并不止于此。

爱因斯坦引入的宇宙常数项是为了抵消引力作用、避免塌缩。因此,这个常数的数值必须非常合适。数值如果太小,不足以抵挡引力,宇宙还是会塌缩;如果太大,则会超越引力,宇宙就会膨胀。爱因斯坦仅仅在数学上确定可以有一个恰恰合适的数值存在,便大功告成地宣布发现了他的(静止)宇宙模型。

理论物理学家温伯格(Steven Weinberg)在他著名的《最初三分钟》科普书中给出一个形象的比喻:如果我们在地球上发射火箭,火箭或者有足够的能量逃离地球,或者最终耗尽燃料被地球引力拉回来坠毁。爱因斯坦式的静态宇宙正好介于逃离(膨胀)和落回(塌缩)之间,无异于是一个停留在半空中正好不上不下的火箭。那火箭的推力必须百分之百地恰到好处。

那么,有没有可能我们这个宇宙恰恰有一个如此准确的宇宙常数值,不偏不倚地抵消引力的作用呢?这不是完全没有可能——毕竟我们并不知道宇宙是怎么来的,也许我们的运气异常地好。然而,这样的平衡还必须是百分之百地准确。因为只要有极其微弱的偏差,宇宙都会或者膨胀或者塌缩,不会保持着静止状态。

也就是说,在数学上我们可以找出一个将鸡蛋平衡在一根针的针尖上静止不动的解。但这属于不稳定的解。因为我们知道,只要稍有偏差,鸡蛋就会倒下。这种解不可能在现实世界中出现。

爱丁顿是在仔细研读被他忽视过的勒梅特论文时才意识到这一点。勒梅特也已经证明了(但没有明确表述出来)爱因斯坦所给出的静止宇宙解正是这么一个不稳定的解——“不具备物理意义”。


加州理工学院竭尽全力,邀请爱因斯坦每年冬天前来学术访问。爱因斯坦显然也喜欢这里的阳光海滩。一年之后,爱因斯坦再次来到南加州。这一次,德西特也来了。在此之前,曾经对勒梅特不屑一顾的德西特研读了勒梅特的论文后也几乎立刻就转变了态度,大赞勒梅特的理论“高妙”。
爱因斯坦(左)与德西特在加州理工学院讨论他们的宇宙模型。

他们俩一番切磋后,合写了一篇仅2页长的论文,发表在美国科学院院刊上。这篇论文没有什么新思想,不过重复了弗里德曼、勒梅特和其他理论物理学家的最新进展。如果换上别的作者,估计不可能通过同行评议。但正是因为作者是爱因斯坦和德西特——宇宙模型的两位开山鼻祖——这篇论文才有了特殊的意义:它标志着两人都正式地放弃了各自的宇宙模型,认同了弗里德曼和勒梅特的宇宙。

这篇论文发表后不久,爱因斯坦去伦敦拜访了爱丁顿。爱丁顿好奇地问爱因斯坦为什么还要发表那么一篇论文,爱因斯坦答曰,我的确并不觉得有多么重要,但德西特很把它当一回事。爱因斯坦走后,爱丁顿收到德西特的一封来信。信中说,你肯定看到了我与爱因斯坦的论文。我不觉得那里面的结果有什么重要性,但爱因斯坦似乎觉得很重要。

两位泰斗“投降”后,广义相对论的宇宙模型逐渐在更多的理论学家的参与和发展下定型,成为所谓的“弗里德曼-勒梅特-罗伯森-沃尔克度规”(Friedmann–Lemaitre–Robertson–Walker metric)。(没错,这里的罗伯森就是那个几年后不动声色地帮助爱因斯坦改正了他在引力波推导中错误的那个罗伯森。)

颇为讽刺的是,因为1932年那篇论文,这个新模型也经常被称为“爱因斯坦-德西特宇宙”。


(待续)