Thursday, February 25, 2021

量子纠缠背后的故事(卅五):分崩离析的裂变

EPR论文发表的1935年,67岁的索末菲退休。他在给爱因斯坦的信中诉说纳粹的上台摧毁了自己一辈子的爱国情操。现在他宁愿看到德国不复存在,并入一个崇尚和平的欧洲。

索末菲的退休是海森堡在莱比锡一直在等待的机会。他梦寐以求回返慕尼黑接替导师的席位。然而他生不逢时。在那之前几年里,海森堡没有参与斯塔克和萊纳德的“德意志物理学”运动,反而支持、协助了劳厄的抵制行动。海森堡坚持物理是客观的科学,无论其理论是否来自爱因斯坦或别的犹太人。

斯塔克没有忘记。为阻扰海森堡的升迁,他发起大批判揭露海森堡的不坚定立场,还给他戴上“白犹太人”的致命高帽。海森堡措手不及,不得不求助与他家有往来的纳粹高级领袖希姆莱(Heinrich Himmler)。希姆莱及时地为海森堡提供了保护,但也严厉警告他必须说话小心,不可造次。在那之后,海森堡吸取教训,不再轻易提及爱因斯坦等犹太物理学家的名字。当然,他的慕尼黑梦想也付诸东流。


EPR论文问世之际,狄拉克正好结束他在高等研究院的短期访问。

相比众望所归的海森堡和薛定谔,名气不高的狄拉克在1933年获得诺贝尔奖时只有区区两个提名。其中之一来自在1925年因X射线衍射实验与父亲共同获奖的布拉格。那时才25岁的布拉格迄今还是最年轻的科学奖获得者。狄拉克得奖时31岁,成为历届获奖者中最年轻的理论物理学家(这个记录在1957年被还不到31岁的李政道(Tsung-Dao Lee)打破。(如果按照所得的1932年奖来算,海森堡比李政道还会更年轻几天。但他是在1933年才得到那个奖。))。

在高等研究院,狄拉克重写他的《量子力学原理》,推出大为改进的第二版。他那套符号表述还没能得到广泛接受,但至少在他手里已经圆润成熟。然而,美轮美奂的数学背后,计算结果中出现的无穷大问题依然让他束手无策。

至少在同行眼里,年过而立功成名就的狄拉克不再是过去那个心无旁骛孜孜不倦的勤奋青年。他上班时经常在活动室里钻研各种棋局,包括充满异国情调的围棋。似乎数学公式及其中的困难都已经不再能拴住他的身心。

更让他们大跌眼镜的是一向不近女色,过着僧侣般日子的狄拉克居然坠入了情网。一次午餐时,狄拉克偶遇研究院朋友维格纳(Eugene Wigner)从欧洲来探望的妹妹曼琪(Manci),一见钟情。曼琪已经是两个孩子的母亲,刚刚摆脱了一场梦魇般的婚姻。她为人爽快健谈,性格活脱脱是狄拉克的反面。

结束在研究院的访问后,狄拉克与六年前一样乘火车横越美国大陆,在旧金山搭乘邮轮经日本、苏联到东欧去看望曼琪。这是他的第二轮环球旅行。

曾经在芝加哥师从康普顿的吴有训已经学成归国,在清华大学担任物理系主任。他得到消息后立即与同校的周培源教授一起邀请狄拉克顺路访问中国。1935年7月12日,狄拉克从日本乘船到天津,然后在北平逗留了一星期。

1935年7月16日,狄拉克在中国访问国立北平研究院物理所。前排左起:吴有训、狄拉克、李书华、熊庆来、严济慈。

他游览了长城、故宫等名胜,也在清华大学做了两场关于电子、正电子的讲座。随后,他乘火车由东北转西伯利亚铁路至莫斯科,继续他的行程。


虽然与院长关系紧张,爱因斯坦对普林斯顿的环境还是很满意。他在1935年5月专程出国,按规定在美国境外的领事馆递交了归化申请。这是他继瑞士、奥地利、德国后第四次也是最后一次更改国籍。在那之后,他再也没有离开过美国。

他和妻子艾尔莎在小镇僻静的街道上置买了一栋普通小楼,与一直跟随着他的秘书杜卡斯合住。他们的小日子不幸非常短暂。艾尔莎的身体每况愈下,在1936年底去世。随后,艾尔莎的二女儿和爱因斯坦的妹妹相继从欧洲来到美国,与杜卡斯一起照料这个举世闻名的鳏夫。(曾担任过爱因斯坦秘书的那个艾尔莎大女儿也已经病逝。)

爱因斯坦与前妻玛丽奇的大儿子也来到美国。他在父亲母校苏黎士理工学院获得工程学位,已然成家立业(爱因斯坦曾经像自己父母拒绝玛丽奇一样强烈地反对儿子的择偶选择)。在其后的年月里,他逐渐修复了因为父母离异、父子隔绝而对父亲的怨恨。爱因斯坦和玛丽奇的二儿子患有精神疾病,只能留在欧洲继续由母亲照料。

年近花甲的爱因斯坦是在艾尔莎病重后才真切体会到自己对这个保姆式后妻的依赖,一时间急剧衰老。妻子去世后,他更加任性地不修边幅,由着那一头白发在风中狂乱飘逸。他沉默寡言,试图独自沉浸在钟爱的物理之中。但除了他自己,所有人都能看出他在学术上已是勉为其难,不再有睿智的思想火花。

当玻尔在1937年初来到普林斯顿时,他看到的正是这样一个激情不再的爱因斯坦。那还是他们1930年索尔维会议分手后的第一次见面。在与薛定谔、玻恩等人热火朝天通信来往时,爱因斯坦与这位老对手完全没有联系。索尔维会议后,埃伦菲斯特作为两人的共同好友曾一度居中传话,试图澄清误解。那个别扭的渠道早就随着他的自杀消失。

尽管爱因斯坦和玻尔在两次索尔维会议上的唇枪舌剑中始终保持着友好的姿态,那天长日久的争执也不可避免地伤害了个人感情。这次重逢,他们寒暄依旧,却不再能敞开心扉畅所欲言。

玻尔也只是在他的环球旅途中路过普林斯顿。日本的物理学家在爱因斯坦、海森堡和狄拉克相继访问后已经花了十年时间在邀请、期盼玻尔来访。奈何玻尔日程繁忙,曾几度推迟行期。1934年,他与大儿子和朋友出海游玩时遭到风浪,儿子落水遇难,给这个和睦的家庭带来沉重打击。这样直到1937年,玻尔才得以携妻子玛格丽特和二儿子踏上旅途。他们在普林斯顿短暂逗留后也横穿美国大陆,乘邮轮前往日本。

吴有训得知后又赶紧委托在美国的周培源向玻尔发出顺路访问中国的邀请。(周培源在加州理工学院获得博士学位后在莱比锡和苏黎士分别担任过海森堡和泡利的助手。在他们的推荐下,他曾到波尔研究所访问,是那时去过那里的唯一中国人。)玻尔欣然同意,于1937年5月20日从日本乘船抵达上海。他们一家三口先后访问上海、杭州、南京、北平,拍摄了大量照片甚至一段彩色电影片。沿途,玻尔也做了多场演讲、座谈,向中国的物理学家、知识分子讲解互补原理以及最新的原子核理论。

1937年,玻尔(前排中)访问中国时与当地物理学家合影。

直到6月7日晚,他们才从北平乘火车出山海关,与狄拉克一样取道苏联返回丹麦。

一个月后,北平郊区的卢沟桥发生事变。短短半年后,玻尔曾经流连忘返的那几个城市相继沦陷于日本军队的铁蹄之下。中国进入全面战争状态。


当薛定谔在1936年10月回到阔别十多年的故乡时,那里已物是人非。奥地利名义上还是独立国家,但已经沦为德国的附庸。虽然薛定谔既不是犹太人也不热衷政治,他在荣获诺贝尔奖前突然离开柏林大学的行为让德国政府和纳粹党徒大光其火,曾经在报刊上大肆批判。回到矮檐下的薛定谔只好低下头,专注于自己的教学任务和学术研究。在跟着爱因斯坦纠缠了一番猫的死活后,他又对爱因斯坦与爱丁顿正在研究的统一场论产生起浓厚的兴趣。

他的个人生活恢复了“正常”,又可以在妻子安妮、两个情人和小女儿之间如鱼得水。作为一个小小的象征性反抗,普朗克还主持将1937年的普朗克奖章授给了薛定谔。那正是薛定谔自己八年前为德国物理学会设立的大奖项。

然而,不到半年后,德国正式吞并了奥地利。这个也是希特勒故乡的传统小国成为德国的一个州。一时间,奥地利的犹太人成为被清洗、驱逐、羞辱的对象。薛定谔也成为眼中钉,言行受到紧密的监视和控制。为了保住岌岌可危的职位,他向校方递交了一份“自白书”,承认自己过去的认识错误,无保留地宣示对德国和“元首”的效忠。这封热情洋溢的信件立即出现在德国和奥地利报纸的头版,并通过英国报刊的转载传遍全世界。在伦敦,林德曼和牛津大学的同僚们为之气愤、痛心。

对薛定谔来说,更糟糕的是他还不得不舍弃那个交往不久的新情人。因为她是犹太人,他只得断然终止关系并要求她将以前的情书尽数焚毁,不留痕迹。

他的高调表态一度改善了处境。1938年春天,他被许可到纳粹德国的首都柏林参加普朗克80岁生日庆祝。夏天,他又带着老情人希尔德去拜访普朗克夫妇,一起在阿尔卑斯山中度假。然而,薛定谔回家后就收到了被解职的公文。奥地利已经不再是他的容身之地。他和安妮不得不再次踏上流亡路,在费米的帮助下取道意大利逃出法西斯领地。

第一次世界大战后从英国赢得独立的爱尔兰那时正在努力提升自己的文化、科学地位。他们模仿普林斯顿的高等研究院在自己首都创建一个同样的学术机构,连名字也完全照搬:都柏林高等研究院。薛定谔还在奥地利时,爱尔兰人就已经通过玻恩与安妮辗转地秘密接头,希望能有这个诺贝尔奖获得者去当新研究院的带头大哥。于是,薛定谔在一番折腾后阴错阳差地获得了他求之不得的理想职位。他不再需要花时间站讲台授课,还有了个至少在名义上与爱因斯坦平起平坐的位置。(在其后的1940年代,玻恩所在的爱丁堡和薛定谔的都柏林成为美国之外中国学生的聚集地。计有彭桓武、程开甲、杨立铭、黄昆、胡宁等人曾在那里学习、进修。)

已经屡次被薛定谔行为激怒的林德曼也再次伸出援手,为他们提供了行程便利。在牛津和比利时临时任职等待一年后,薛定谔和安妮在1939年10月初到达都柏林安家。他们还带着玛奇已经“送还”的希尔德和小女儿。薛定谔另外的那个情人自己逃离奥地利后也与他们再度汇合,重归于好。

他的生活又一次恢复了正常。


1939年初,玻尔再度来到普林斯顿。高等研究院已经永久性地聘请他为访问成员,拥有随来随去的特权。这一次,他在研究院中驻扎了半年之久。然而,爱因斯坦似乎有意回避远方的客人,他们只在所里的聚会场合有过几次碰面。其间爱因斯坦做过一次统一场论进展的讲座,玻尔躬逢其盛。爱因斯坦一如既往地坚持那才是有望解决量子力学问题的最佳途径。但他又直视着玻尔强调他不愿意再继续讨论这个话题。被噎住的玻尔甚是不快,无可奈何。

其实玻尔这次也不会有多大兴致继续那个争论,他有着更紧迫的现实问题。就在丹麦的码头上登船那一刻,他得知了来自柏林的最新实验结果:当铀被中子撞击时,出现了质量不到铀一半的钡。因为犹太人身份逃离德国的迈特纳(Lise Meitner)和侄子弗里施(Otto Frisch)认为那是铀原子核被打击后分裂成两个质量差不多的碎片,钡是其中之一。

卢瑟福早就确定了原子不是一成不变的“元素”。质量重的原子核可以自发衰变为另一种原子,轻的也能被考克饶夫和沃尔顿的加速器中出来的质子打开,发生人工嬗变。但原子核整个地一分为二却还是非同小可。弗里施借用生物学中细胞分裂的术语把它称作“裂变(fission)”

还在横渡大西洋的邮轮上时,玻尔已经认定伽莫夫的液滴模型是理解原子核裂变的有效工具。自然地,他需要一个得力的年轻助手协助他完成具体的计算并撰写论文。事有凑巧,在纽约港口迎接他的是曾在哥本哈根镀过金的老相识惠勒(John Wheeler),立刻就抓了他的差。惠勒已经是普林斯顿大学的助理教授,正好天时地利人和。师徒俩一头扎进这个新课题,短短几个月间奠定了原子核裂变的理论基础。

相比之下,爱因斯坦的纠缠和薛定谔的猫不是那么急迫。

那年7月,玻尔结束在美国的访问回到哥本哈根。两个月后,德国军队发动闪电战大举入侵波兰。欧洲的第二次世界大战揭开序幕。


那个夏天海森堡也一直在美国巡回访学、出席学术会议。尽管他刻意回避,他们的话题总不可避免地会涉及一触即发的战争形势。在罗切斯特,他过去的助手威斯科夫(Victor Weisskopf)和老相识贝特(Hans Bethe)都强力劝说他在美国留下。但海森堡立场坚定。他相信纳粹会赢得这场战争。虽然他本人对纳粹并没有好感,却也必须为国效力。

一站又一站,海森堡的老朋友们听到的是同一个回答。在8月份的会议上,他没等会议结束就匆匆辞别。因为他必须赶回去参加机关枪射击训练。

短短三年后,贝特和威斯科夫不得不向美国政府提议在战争中寻找机会以绑架、轰炸甚至暗杀的形式对付他们这位过去的导师、朋友,“否决敌人的大脑(deny the enemy his brain)”。

其后两年中,美国军方做了多次尝试,只因种种缘由未能奏效。1944年12月,海森堡到中立的瑞士讲演。他不知道听众席上正坐着一位怀中揣着手枪的美国间谍,其使命是只要听到海森堡透露出他们在核武器上有任何进展的迹象就不惜任何代价将他当场击毙。海森堡的那次演讲却是纯学术,讲解他为解决量子问题新发明的“散射矩阵(S-matrix)”理论。为了避免外交纠纷,间谍没有采取行动。(这位间谍名叫伯格(Moe Berg)。他原来是美国职业棒球明星,也是普林斯顿和哥伦比亚法学院毕业的高材生。因通晓七国语言在战争爆发后投身地下工作。)

海森堡侥幸活到了战争的结束。与贝特和威斯科夫一样,当年在一起探索自然秘密的物理学家都因为战争归属了敌对的两个阵营。发现电子自旋后就到美国工作的古德斯密特受命在战场上搜捕参与核武器计划的德国物理学家,将他们统一关押于设在英国的特殊营地,通过监听手段获取他们的机密。海森堡、劳厄、萊纳德等人都成为那里的阶下囚。他们是在那里听到原子弹在日本爆炸的新闻才知道美国、英国已经超越德国,获得了他们未能攫取的成功。

87岁高龄的普朗克也被古德斯密特追踪捕获。他没有被送往战俘营,而是获准自己养病。普朗克深受脊背痛苦,已然伛偻龙钟。在80岁生日之后,即使德高望重也因为立场不坚定被指为“白犹太人”的他决定彻底退休,不再过问政事。临别之际,他还做主把1938年的普朗克奖章授予德布罗意:一位追随“犹太物理学”的法国人。

普朗克曾在一战中失去他的大儿子,二儿子在法国战场上被俘而幸存。战后,那个儿子逐渐成长为政府中的部长助理,但在希特勒上台那天辞职。1944年,已经败像毕露的德国军队中发生政变,部分高级官员刺杀希特勒失败。在随后的大清查中,普朗克的儿子也涉案被捕。年老的普朗克不得不低声下气地向希姆莱、希特勒求情,但儿子还是被处以绞刑。(在哥本哈根改编《浮士德》的德尔布吕克的妹妹、妹夫和妹夫的弟弟也在那次事件中牺牲。)


卢瑟福没能看到原子核裂变的发现。他在那之前的1937年一次手术中意外离世。作为原子核嬗变的鼻祖,卢瑟福清楚核反应时会释放能量。但他认为那能量过于微弱,不具备实用价值,只是所谓的“月光(moonshine)”——不切实际的痴心妄想。

裂变是剧烈的核反应,释放出比卢瑟福看到过的嬗变中大很多的能量。那却也不过是稍微明亮一点的“月光”。匈牙利物理学家西拉德(Leo Szilard)却一直坚持着一个可能性。铀原子核裂变时还会产生几颗中子。如果这些中子又能碰到另外的铀原子核如法炮制,便可以形成持续性的“链式反应(chain reaction)”。这样,微观世界那微乎其微的能量可以在极短时间内聚集,在宏观世界中宏伟壮丽地爆发,甚至成为可以决定战争胜负的巨型炸弹:原子弹。

西拉德也是众多从欧洲逃到美国的犹太人之一。他人微言轻,只好联合同是匈牙利人的维格纳和泰勒(Edward Teller)说服大名鼎鼎的爱因斯坦出面。(他们三人后来被戏称为促成美国核武器的“匈牙利阴谋”。)他们一同起草了一封致美国总统罗斯福(Franklin Roosevelt)的信,提醒政府注意这个潜在的威胁和机会。信由爱因斯坦签名送达白宫时,德国刚刚入侵波兰。

1939年8月,西拉德(右)与爱因斯坦讨论给罗斯福总统的信稿。

那年年初在纽约港口迎接玻尔的除了惠勒还有费米。因为妻子是犹太人,费米在意大利也处境艰难。正好,他因为核物理研究的成就获得了1938年诺贝尔奖。在斯德哥尔摩领奖后,费米带着妻子和两个孩子以奖金为路费直接来到了美国。

三年后,费米和西拉德所带领的团队在芝加哥实现了人类第一个链式核反应。

1945年8月6日和9日,两颗不同型号、设计的原子弹分别在日本的广岛、长崎上空爆炸。8月15日,作为法西斯轴心国最后堡垒的日本无条件投降。第二次世界大战结束。


作为德国研制核武器的“大脑”,海森堡虽然逃过了反法西斯同盟国的追杀,却没能为他的祖国建造出原子弹。第一次世界大战之后,德国的物理学在普朗克坚定、稳健的领导下重新崛起,在最尖端的量子力学、核物理上傲视全球。海森堡没能在核武器上取得突破,也始终确信敌对方更不可能有所成就。直到在战俘营中听到原子弹爆炸的新闻他才如梦初醒。迫于形势,他极力改写历史,为自己塑造出一个在内部消极抵抗纳粹,故意拖延原子弹进程的新形象。

原子弹的爆炸再一次将爱因斯坦推上举世瞩目的前台。卢瑟福的“月光”在一瞬间变作史无前例之“比一千个太阳还亮”的释放,充分展示狭义相对论所揭示质量转化能量的威力。

因为那封给罗斯福的信,爱因斯坦也经常被看作原子弹的始作俑者。其实,他的信只得到一般性的注意。美国研制原子弹的“曼哈顿计划”是在那之后两年多才开始实施。那时日本已经轰炸了珍珠港,将美国拖进大战。原子弹的初步研究也已经在英国完成。

由于还有着同情共产党和反战的嫌疑,爱因斯坦没有获得接触最高机密的资格,与曼哈顿计划无缘。而对原子弹举足轻重的也不是他的相对论,而是那同样由他首创,却始终让他爱恨交加的量子理论。

真正领衔实现了海森堡未能做到之壮举的却是一个由他过去同事、朋友和学生组成的强大团队。他们中的主力正是包括西拉德、维格纳、泰勒、弗兰克、费米、贝特、威斯科夫等一大批因为纳粹迫害而逃离欧洲的犹太物理学家。他们也有着如斯莱特、惠勒那些曾经在欧洲的量子力学圣地游学、镀金的少壮。当然,还有曾在美国各个大学校园中聆听索末菲、玻尔、玻恩、海森堡、狄拉克等人巡回讲座的年轻人。而最为出乎意料,他们这一方的“大脑”竟是曾在剑桥和哥廷根镀金,与狄拉克相交甚欢的那个纨绔弟子奥本海默。

毫无例外,他们都是以玻尔、海森堡为代表的哥本哈根学派的成员,或者是在其熏陶下学习、掌握量子力学的新一代。

原子弹的爆炸不仅宣告了第二次世界大战的结束,也标志着人类进入核能量的新时代。从世纪之初贝克勒尔在铀矿石中发现放射性,经过卢瑟福、玻尔、爱因斯坦、海森堡、薛定谔等人的不懈努力,量子的概念不再只是为了解释黑体辐射、光谱数据的权宜之计,也不再局限于看不见摸不着的微观世界。它伴随着原子弹那眩目的闪光、骇人的蘑菇云进入了寻常人家的视野。

1945年8月6日和9日分别在日本广岛(左)、长崎爆炸的原子弹所产生的蘑菇云。

原子弹的成功又一次无可辩驳地宣示了量子力学的正确性。而在那战火辉煌的年代,爱因斯坦对量子力学完备性的质疑只是杞人忧天,无人再问津。

惠勒只是愧疚他们的动作还是太慢了。他的一个弟弟曾在1944年惨烈的意大利战场上寄回一张明信片,上面只写有两个字:“快点(hurry up)!”拥有历史学博士学位的弟弟了解哥哥曾经与玻尔一起研究过原子核裂变,早就猜想到他是在后方参加研制威力强大的新武器。但弟弟已经等不及了。明信片寄出几个月后,他在战场上捐躯。


(待续)


Monday, February 15, 2021

量子纠缠背后的故事(卅四):薛定谔的猫

薛定谔1933年底来到牛津,当即让学校现成地捡到一个诺贝尔奖。他自己和促成他到来的林德曼都很风光了一阵。薛定谔英语十分流利,讲课风格与在柏林时同样地别具一格,很快在老派英国教授中出类拔萃,成为最受学生欢迎的老师。

他自己却不那么开心。无论是在柏林还是牛津,他都承担着相当多的教学课时,占用了太多精力。老朋友爱因斯坦在柏林时就享有特殊待遇,是那里绝无仅有的不开课教授。离开柏林后,他又得到美国高等研究院的职位,照旧没有授课负担。这让薛定谔羡慕不已。得到诺贝尔奖后,他最期望的就是能获得与爱因斯坦同等的地位、待遇。

为此,薛定谔与爱因斯坦保持通信联系,期望老朋友能在高等研究院也为他谋个位置,重温他们在柏林郊区亲密无间的时光。

高等研究院当时所寄居的普林斯顿大学倒是正好在寻求理论物理教授。他们自然地把目标锁定于诺贝尔奖新秀。狄拉克已经在剑桥稳坐卢卡斯席位,海森堡没有离开德国的意愿,薛定谔便成为首选。然而,当薛定谔得知那里给出的一万美元年薪比爱因斯坦的待遇少三分之一,还必须授课时,他心理无法平衡,回绝了聘请。

薛定谔那时没意识到普林斯顿大学的待遇已经是美国大学教授的最高标准,只是无法与高等研究院、爱因斯坦的特例比肩。不过他也不着急,宁愿在牛津静候爱因斯坦迟早会给他带来的更好消息。

至少在个人生活上,他在牛津正如鱼得水,与妻子安妮和情人希尔德堂而皇之地享受一妻一妾的日子。这是他终于能胜过爱因斯坦的一筹:妻妾同堂是爱因斯坦曾心向往之但未能如愿的梦想。

希尔德很快生下了一个女儿,终于让望子心切的薛定谔品尝到弄瓦之喜。只是孩子出生登记上父亲的名字还只能写上希尔德那留在奥地利的丈夫玛奇。因为生活的变故,希尔德得了严重的产后抑郁症。同样钟爱孩子的安妮义不容辞地承担起抚养幼儿的重任,同时也精心照顾丈夫的情人。

在这不寻常的日子里,薛定谔看到远在大洋彼岸的爱因斯坦再度出头质疑量子力学,不禁欣喜。


EPR论文的发表只在玻尔、泡利、海森堡周围的小圈子中引起骚动,在玻尔发表回应后顷刻烟消云散。量子物理学的主流——尤其是更年轻的一代——早已转移战场。中子的发现打开了理解原子核组成、结构的窗口。在EPR论文问世之际,伽莫夫已经推出原子核结构的“液滴模型(liquid drop model)”,费米提出解释β衰变的弱相互作用理论,日本的汤川秀树(Hideki Yukawa)也发表了原子核中强相互作用的“介子(meson)”猜想。这些与实验现象息息相关的新思想激发了量子力学又一个埋头计算、验证的高潮。他们没有闲情顾及爱因斯坦与玻尔那十多年没完没了的务虚争辩。

在他们眼里,爱因斯坦早就无可救药地落伍了。他不再是专利局中异军突起,以相对论的时空观和光的量子性挑战物理学权威那个无所畏惧的施瓦本小伙。几十年后,他业已蜕变为死抱着决定论、局域性、因果关系这些经典规则不放的昏庸卫道士。

爱因斯坦在给薛定谔的信中无奈地自嘲:“毕竟,年轻时的妓女多数会转变为虔诚的老妇,很多青年革命家也会成长为老年的反动派。”薛定谔在回信中惺惺相惜,自承也属于从早年革命家变成的老反动派。相隔着大西洋,他们频繁鸿雁往返,有时等不及对方回复就又有信件寄出,分享最新的思想火花。

爱因斯坦也收到很多反驳EPR论文的私信。这些信中的论据五花八门,互为矛盾,让他既觉得滑稽,也更坚定自己的立场。同时,他孜孜不倦地试图找到更有说服力的表达方式,以弥补波多尔斯基在论文中的辞不达意。

在EPR论文问世不久的1935年6月,爱因斯坦就在给薛定谔的信中提出一个极为简单的情景:有两个箱子,其中有一个球。在打开箱子查看之前,我们不知道球在哪个箱子里。球在每个箱子都有着50%的可能性。一旦打开箱子,真相立即大白:球在一个箱子里的几率或者是100%,或者是0%。

爱因斯坦指出,箱子打开之前的几率不过来自我们认知的缺陷:不知道球在哪里。作为物理实在,那个球一直就在其中的一个箱子里。它在那个箱子中的几率从来都是100%,而在另一个箱子里的几率一直是0%。它在哪个箱子里都不曾,也不可能有过50%的可能性。这个可能性更不会因为箱子被打开而突然改变。

在爱因斯坦看来,量子力学之所以坚持箱子打开前球在其内的几率是50%,然后又会随着箱子的打开而突变,完全是出于主观的认知缺陷,没能完整地描述这个系统的物理实在。因此,量子力学不完备。

两个月后,他在给薛定谔的信中又提出一个更具爆炸性的例子:设想有一堆不稳定的炸药,随时可能因为内部发生自燃而爆炸。在任何给定时刻,它的物理实在非常清楚:或者尚未爆炸,或者已经爆炸。然而,爱因斯坦抱怨道,量子力学的波函数描述却坚持炸药会处于一个既爆炸了又没有爆炸的混合状态。


当一根精确调准的琴弦被拨动而发声时,人们听到的并不是单一频率的纯正音调,而是几种频率混合而成的音色。

乐声来自琴弦的振动。在两端固定的琴弦上,稳定、持续的振动是有着特定频率的驻波。频率最低的驻波波长是琴弦长度的两倍,正好以两端作为半个波长的节点。那就是该琴弦的“基频”。同样的琴弦上还可以形成更多的驻波,它们的频率是基频的整数倍。

两端固定琴弦上的驻波示意图。最上面的是基频驻波,依次往下是频率越来越高(波长越来越短)的倍频。

当乐师以不同的力量和技巧拨动琴弦时,会同时激发强度各异的多个驻波。它们组合成不同的音色。耳朵好使的专家能够自然地分辨出乐声中所蕴含的各个频率成分,技术人员则有各种频谱仪器可以帮忙进行同样的分析。

驻波能够组合成音色是因为琴弦振动的数学方程是线性的。当驻波是这个方程的解时,它们以任意比例的线性组合也同样是满足方程的解,也就是在那琴弦上允许出现的振动。

同样,当牛顿用一个棱镜将太阳光分离成缤纷的彩虹时,他揭示出白光其实是由不同频率的光组合而成。棱镜就是一个光的频谱分析器。

无论是光束中的颜色还是乐声中的音调,它们都是实在的物理波动,因此能被仪器分离、过滤。它们组合而成的整体效果在视觉、听觉上可能更为丰富精彩,赏心悦目。但在物理性质上,单频的成分与整体的合集没有区别:它们都是满足同一个波动方程的解,同样的波动。

与声波、光波一样,描述量子波函数的薛定谔方程也是一个线性的微分方程。因此,它的解具备着同样的可“叠加(superposition)”性:如果方程有着多个波动解,那么它们的任意线性组合也同样是方程的解。

在狄拉克、约旦、冯·诺伊曼等人的努力下,量子力学已经有了完整的数学表述。相应于琴弦的驻波,薛定谔方程的解有着一系列“本征态”(它们在玻尔原子轨道上形成的驻波式直观图像正是德布罗意提出物质波的根据)。不仅每一个本征态是薛定谔方程的解,它们的各种线性组合也都是方程的解。后者因此也叫做“叠加态”。

在爱因斯坦的简单例子中,球在第一个箱子里是一个本征态,球在第二个箱子里也是一个本征态。它们的线性组合——球以一定比例在第一个箱子里,同时也以一定比例在第二个箱子里——就是一个叠加态,也是一个满足条件的波函数。同理,炸药可以处在一个既爆炸了又还没有爆炸的叠加态。(这些叠加态中两个本征态的相对比例可以是任意数值,只要两个几率加起来成为百分之百。比如,炸药完全可以处于80%可能已经爆炸、20%可能尚未爆炸的叠加态中。用各为50%的比例只是为了叙述方便。)

然而,量子力学的波函数也有着与声波、光波截然不同的一面:它不是物理的波动。按照玻恩的诠释,波函数体现的只是几率,本身不是可观测的物理量。如果扔上足够多次的硬币,我们可以总结出硬币正面、反面出现的几率各为50%。但在每次扔硬币的具体测量过程中,我们只会看到或者正面或者反面,不会有一个50%的数值出现。

冯·诺伊曼认为量子世界的测量是同样的情形。当系统处在一个由多个本征态组成的叠加态时,每次测量的结果只能是其中的一个本征态。只有在大量重复同样的测量后才能看出每个本征态出现的几率由它在叠加态中所占比例决定。这是海森堡早就提出的量子力学中波函数坍缩机制的更精确描述:测量的过程会导致原本处于叠加态的波函数瞬时坍缩到其中一个本征态上,坍缩到哪个本征态上的几率取决于它在叠加态中的份量。

在这样的测量发生之前,没有人为干扰的量子系统会持续处于叠加态中,依照薛定谔方程在希尔伯特空间运动。这时不会有波函数的坍缩。量子的叠加态像一曲美妙的交响乐,是其中各个本征态的和谐组合。

于是,在打开箱子的测量之前,爱因斯坦的球会以叠加态的方式同时藏在两个箱子里。他的炸药也同样地处于既爆炸了又没有爆炸的状态中。


爱因斯坦那一封接一封的来信让薛定谔脑洞大开。他收到关于炸药的那封信后几乎立刻就回了信,兴奋地告诉爱因斯坦他依照这个思路找到了一个更能显示量子力学之怪诞的例子。

随后,他发表了在EPR之后跟进的第三篇论文。正是在这篇题为《量子力学之现状(The Present Situation in Quantum Mechanics)》的论文中,他提议用“纠缠”描述爱因斯坦那鬼魅般的超距作用。进一步,他又绘声绘色地描述一个新场景:

我们还可以构造出更滑稽的情形。一个铁箱子里关着一只猫和一个恶魔般的装置(这个装置必须置放在猫够不着的地方):在一个盖革计数器内有一丁点放射性材料,其数量如此之小,在一个小时之内最多只会有一颗原子可能发生了衰变,但也同样可能完全没有任何原子发生衰变。如果确实发生了衰变,那盖革计数器就会有反应,通过一个接力装置拉动一把锤子,打碎一个盛有氰化氢气体的烧瓶。在这个封闭的仪器不被干扰地置放一小时后,如果还没有原子发生衰变,那猫会活着;只要有过衰变发生,猫就会被毒死。这么一个系统的波函数会把这个状态描述为同等成分的死去的猫与活着的猫混合地涂抹在一起。

他在文中专门为使用“涂抹(smear)”一词抱歉。那其实是一个讨论量子力学时经常使用的字眼,表明电子等微观物体不是一个点状的粒子,而是被“涂抹”开来的波,具有一定的空间分布。但在这里,这个形象的字眼为本来就挺恐怖的场景增添了更为恶心的画面。

薛定谔的猫假想试验示意图。

他也没忘了感谢爱因斯坦,明确表示他这一灵感来自与爱因斯坦的持续讨论和EPR论文。


也是在1930年代,美国漫画家戈德堡(Rube Goldberg)因为擅长创作以非常复杂的接力方式完成日常生活中最简单任务的漫画名噪一时。他所描绘的那类没有实际效用但能博君一笑的设计因之被称为“戈德堡机器”。

戈德堡1931年创作的“自动餐巾”漫画。图中喝汤的人手里举起勺子,逐次牵动一连串运动,最终导致餐巾摇摆擦嘴。

薛定谔所描述的也是一个戈德堡机器。

把一只猫关在封闭的铁箱子一小时,猫可能会因缺氧憋死,也可能依然苟延残喘地活着。那不过只是爱因斯坦炸药的另一形式。但薛定谔在箱子里增添了放射性材料,加上盖革计数器、锤子、毒气瓶以及它们之间没有明确但肯定会是相当复杂的接力、放大装置。它们连接了两个极端:宏观世界中的猫和微观世界中的放射性原子。

这中间正是玻尔的软肋所在。在哥本哈根诠释中,微观是量子的世界。那里只有波函数,在被测量时发生坍缩而显示某种物理实在。宏观则是日常的经典世界,没有波函数、随机性,一切都有着确定的因果关系。这是泾渭分明的两个世界,它们只会在测量过程中发生接触。然而,玻尔他们从来没能说明如何界定这两个世界之间的分野。

薛定谔反其道而行之,用那一连串戈德堡式机制让这两个世界发生了“纠缠”,显示它们其实不可区分。

依据伽莫夫的解释,原子核中的α粒子以所处位置而言处于一个量子的叠加态。其中绝大成分的本征态在原子核内部。但由于隧道效应,也有一小部分处在原子核外的本征态。当我们观测α粒子时,会引起这一叠加态的坍缩。如果坍缩碰巧落在原子核外的本征态上,α粒子便会出现在原子核外。它会激发盖革计数器,进而带动戈德堡机器运转,直至拉起锤子,击碎烧瓶,毒死那只猫。反之,如果坍缩落在原子核内部的本征态上,α粒子继续逗留在原子核内,猫安然无恙。

薛定谔在箱子里置放了合适数目的放射性原子,它们在总体上形成有50%的可能性至少有一颗α粒子出现在原子核外。那戈德堡机器也就有着50%的几率处于被触发状态,亦即猫有着50%的机会已经被毒死。同样,也有50%的可能是所有的α粒子都留在了各自的原子核内,箱子里啥事也没发生过。

因为箱子上封闭的,无法对α粒子的位置进行测量。在打开箱子之前,所有α粒子都会保持着原有的叠加态,没有坍缩的发生。它们既在原子核内也在原子核外。由此,薛定谔宣布,那只猫也相应地处于既死去又活着,两者混合“涂抹”在一起的状态。

这样,宏观世界里、日常生活中的猫也有了量子的叠加态。

爱因斯坦立刻领会了薛定谔新版假想试验背后的意义。他回信盛赞薛定谔完全领会了他质疑量子力学的深意。至少他们俩有了完全一致的理解。

但爱因斯坦看到薛定谔把他这篇论文发表在德国学术刊物上时大惑不解。他揶揄地指出希特勒治下的德国大概已经没有剩下关心这个问题的物理学家了。

其实,即使在德国之外也没有人愿意继续奉陪他们的狡辩。当玻尔来伦敦访问时,他毫不留情地当面指责薛定谔与爱因斯坦合谋,以知名物理学家身份继续攻击量子力学,无异于犯了“叛国罪”。薛定谔那只猫纵然既死又活,也还是没能引人侧目。


在那段时间里,爱因斯坦乐于通信的老朋友还有玻恩。作为波函数几率解释的始作俑者,玻恩的立场与爱因斯坦迥然相异。但他们依然延续着诚挚的友情。玻恩那时也正自顾不暇,无意介入这新一轮的争论。

1933年的诺贝尔奖对长期抑郁的玻恩是雪上加霜。当初,海森堡在海岛上的灵机一动是在玻恩的慧眼下才成为严谨的矩阵力学。薛定谔的波动方程也是在玻恩揭示其几率波本质后才有了物理意义。然而,在物理学界最高荣誉面前,玻恩再一次被忽视、遗忘。

得奖半年后,海森堡曾在访问剑桥时面见玻恩,劝他回国一起挽救、重振德国的物理学。他告诉玻恩已经与政府沟通,会允许他从事科研,只是不能授课。玻恩也只能自己一人回去,不能带家属。看到昔日的弟子居然能够兴致勃勃地转达这样的条件,玻恩气愤莫名,只能挥袖而去。一年后,他收到一纸公文,正式被哥廷根大学除名。

1935年7月23日,正式解除玻恩教授职位的希特勒签名信。

还在意大利避难时,玻恩宅心仁厚地只愿意接受临时职位,以免占了位置耽误年轻人的升迁机会。他自认为早已是国际知名教授,不至于走投无路。在剑桥短短两年,他出版了历史上第一部《原子物理》教科书和一本面向大众的科普书籍。

狄拉克的得奖让剑桥有了自己的理论明星,玻恩于是显得多余。在没有更好选择的情况下,玻恩接受也是新科诺贝尔奖得主拉曼的邀请远赴印度访问。拉曼在那里组建一个新的研究所,希望能将玻恩留下担任终身教授。玻恩也深深喜爱上那里的异国情调。不料,他的提名遭到当地几个教授激烈反对。有人当场指出玻恩只是一个被他自己国家抛弃的不知名二流教授,不够资格。玻恩会后回到家里,不禁在妻子面前潸然泪下。

两手空空回到英国后,他开始学习俄语,准备通过关系去苏联谋生。也正是在那绝望时刻,达尔文终于带来了好消息。


即使是全世界最著名的科学家,爱因斯坦发现美国也不尽是他的理想庇护所。因为他频频发表的演讲和联署的宣言,美国一些民间组织怀疑他是一个共产主义者,曾游说外交部拒绝他入境。(还在欧洲时,爱因斯坦为了避嫌曾多次谢绝访问苏联的邀请。)在1932年底赴美之前,他果然在申请签证时遭受美国领事馆官员盘问,气愤地甩手离席。幸好妻子艾尔莎及时向媒体报信,引起《纽约时报》等舆论关注后才得以成行。

在普林斯顿,高等研究院的院长弗莱克斯纳也唯恐爱因斯坦会说错话,为他这个新研究院带来不利影响。他想方设法限制爱因斯坦的公开露面,甚至私自截留、审查爱因斯坦的私人信件。爱因斯坦发现后,负气地把自己回信地址写成“普林斯顿集中营”,并向研究院理事会提出正式申诉。弗莱克斯纳不得不做出让步,但他们俩还在萌芽中的友谊因之彻底夭折。当爱因斯坦屡屡提出邀请薛定谔、玻恩来研究院时,弗莱克斯纳总是不假思索地否决。

薛定谔因此没能等到他所期盼的好消息。同时,他发现自己在牛津的好时光也已日薄西山。

他在林德曼面前信誓旦旦地称作“不可或缺”的科研助手玛奇终于来到了牛津。玛奇看到妻子希尔德的状况后决定不再逗留,带着她和他们名义下的女儿一起返回奥地利老家。妾离子散的薛定谔倒还没有太在意。他已经有了新的情人:安妮当年在维也纳打工时老板的女儿。

虽然林德曼在得知玛奇一事后怒不可遏,他还是借助诺贝尔奖的光环为薛定谔在牛津延长了聘用期。薛定谔却已经不再满足于这种临时职位。在去美国无望后,他积极在欧洲寻觅正式职位。

1935年进入尾声时,在苏格兰历史悠久的爱丁堡大学担任物理教授的达尔文急流勇退,辞职去担任一所学院的院长。爱丁堡大学很快决定聘请大名鼎鼎的薛定谔继任。不料,苏格兰政府迟迟未能办理薛定谔的居留许可。而薛定谔向新欢探寻是否愿意一起去苏格兰时,却发现斯人已自己计划了回维也纳老家。

突然间,薛定谔发现他和安妮被“遗弃”在英伦。恰好,家乡的维也纳大学和格拉茨大学也联合向他发来了邀请。于是,他思乡心切起来,决定逆着逃难大流返回奥地利。那里有他的女儿,还有两个让人牵肠挂肚的情人。

时过境迁,无论是苏格兰还是奥地利,薛定谔能得到的待遇都远远不及当初被他轻易拒绝的普林斯顿大学。而且,他还需要在奥地利两所大学中承担起更为繁琐的教学任务。

在达尔文的推荐下,爱丁堡大学向几近山穷水尽的玻恩张开了双臂。玻恩很快走马上任,终于有了自己的归宿之地。


(待续)


Tuesday, February 2, 2021

量子纠缠背后的故事(卅三):鬼魅般的超距作用

爱因斯坦与波多尔斯基和罗森合写的那篇“攻击量子理论”的论文在1935年3月25日投寄美国的《物理评论》。《纽约时报》5月4日分布消息时,论文尚未问世。

10天后,刊载这篇已经引起在媒体上引起轰动论文的刊物才逐渐送达世界各地的物理学家手中。论文的题目是一个直截了当的设问:《量子力学对物理实在的描述可以被认为是完备的吗?(Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? )》。即使没有《纽约时报》的预警,收到杂志的行家不需要阅读内容也能判定这篇带着爱因斯坦大名的论文只会给出一个否定的回答。

爱因斯坦、波多尔斯基和罗森发表的EPR论文首页。

其实,这篇依惯例按作者姓氏缩写被称作“EPR”的论文并非出自爱因斯坦之手。波多尔斯基晚年后曾向儿子透露,他和罗森两人在征得爱因斯坦首肯后独立完成了论文,未经爱因斯坦同意擅自署上后者的大名发表。

罗森则记得爱因斯坦全程参与了研究过程,几乎每星期都与他们俩讨论并提供了论文中的主要思路。罗森自己做了具体的数学演算,波多尔斯基作为主笔撰写了论文(英语不是母语的波多尔斯基在论文题目的“量子力学的描述”前遗漏了一个挺重要的定冠词“the”,颇引人注目)。

无论如何,爱因斯坦显然不会像玻尔那样在论文写作时反复斟酌,为每一个措辞斤斤计较。相反,在概念、思路上提供指导之后,他大概的确连论文稿都没仔细看过,就漫不经心地由着两个小年轻拿去发表了。只是在收到大量反馈之后,他才在给薛定谔的私信中抱怨波多尔斯基没能写好这篇论文:太多的数学细节埋没了其实非常简单的基本思想。


作为一篇讨论量子力学对“物理实在”描述的论文,EPR开门见山就提出一个至少对物理学家而言似乎不言而喻的哲学性论断:有一个独立于任何理论的“客观实在(objective reality)”的存在。在这个基础上,人类构造出理论描述这个客观的实在。这样的理论通过自己的物理概念描述客观的现实。

如何才能知道一个理论是否成功?爱因斯坦和他的两个合作者在论文中提出理论必须同时满足两个条件:正确性和完备性。

物理学家对检验理论的正确性非常内行,毋庸多言。一个成熟的理论能够通过其物理概念对现实做出定量的预测。如果这样的预测能够经得起实验测量的检验,那么便可以判断理论的正确。虽然量子力学还相当年轻,它毫无疑问已经相当理想地通过了这一检验。如同爱因斯坦在诺贝尔奖提名信中所言,量子力学中至少有着正确的成分。

让爱因斯坦放心不下的是量子力学的完备性。那也正是EPR论文的焦点所在。

为了避免无的放矢的泛泛而论,他们也专门给出了下一个定义:只有当物理实在的每一个元素都能在理论中有对应的概念时,那个理论才是完备的。它没有遗漏任何现实成分,可以对物理实在的每一个表现作出可验证的预测。

那么,什么又是“物理实在”呢?“如果在不对系统造成任何干扰的前提下,我们能够以百分之百的确信度预测一个物理量的数值,那么该系统中必然存在有一个与这个物理量相对应着的物理实在。”

这一连串的定义在论文中以强调语气的斜体字出现,强烈地提醒读者其重要性。只有把这些概念交待清楚后,他们才能具体地阐述量子力学的完备性问题。

比如最简单的只有一个粒子的物理系统。由于海森堡不确定原理的限制,这个粒子的动量和位置不可能被同时确定。如果针对粒子的动量进行精确的测量,就会造成波函数的坍缩,使得粒子进入一个有确定动量数值的量子态。这样,粒子的位置变得完全不可预测,会以同样的几率在任何位置出现。这样的测量显然干扰了系统的状态。根据他们的定义,这里的位置和动量不能同时是物理实在。

取决于观察者对测量手段的选择,当这个粒子的动量成为物理实在时,它的位置便不可能是物理实在。反之亦然。这是已经被接受的哥本哈根诠释下的量子力学的现状。EPR指出这也许已经表明量子力学波函数对物理实在的描述不够完备。

但如果更进一步地考察有着两个粒子的系统就更有意思了。那正是爱因斯坦与波多尔斯基和罗森屡次讨论的结果。他们不再需要原来那个假想的光子箱,甚至罗森曾经计算过的氢分子。他们——至少波多尔斯基和罗森——可以直接用量子力学的数学形式来描述这个抽象的双粒子系统。

两个粒子在近距离的互相作用下会进入同一个量子态,由同一个波函数描述、引导。随后,它们相揖而别,各自飞向相反的方向。在没有外界干预的情况下,它们无论彼此分开多远,也会不忘初心,继续处于那个共同的量子态中。

它们中一个可能碰巧来到地球附近,引起这里人类的好奇。他们观察了这颗粒子的动量,引起其波函数的坍缩。这个干扰行为使得这颗粒子的动量完全确定,进入了一个不同的量子态。它的同伴这时可能远在宇宙另一端,遥遥不相及。然而,因为系统总动量的守恒,测量者可以由这个近处粒子的动量确切地推算出远方那个粒子的动量。这样,那颗粒子的动量也成为已知数。或者说,它的量子态也随之发生了变化。

然而地球上的测量行为只是对近处这颗粒子造成了干扰,并没有涉及远处那颗粒子。即使这样的测量可能干预到整个体系,这一干扰最快也只能以光速向那另一颗粒子传递。当远处的粒子因为近处粒子被测量而突然具备确定的动量数值时,它显然还不可能感受到测量行为的干扰——那只会是几年、几百年甚至几亿年之后的事情。

于是,爱因斯坦他们提出,远处那颗粒子是在没有经受任何干扰的前提下有了百分之百可预测的动量数值。因而,根据他们给出的定义,那颗粒子的动量是一个物理实在。

同理,如果地球人没有测量动量而是测量了近处这颗粒子的位置,他们也能推算出天边那颗粒子的位置。这样,那颗粒子的位置也是一个物理实在。

然而,在量子力学中,地球上对近处粒子动量、位置的测量只能二选一,不能同时精确测量。对远处那颗粒子动量、位置的预测也就不可能同时达到百分之百的确信度。对那颗粒子来说,它的位置和距离都是实在的物理量,却在量子力学中不可能同时准确预测。这说明量子力学中的物理量没能做到与那颗粒子的物理实在一一对应。再次根据他们给出的定义,这样的量子力学显然不可能是完备的。


经过几十年的努力,美国的物理学界比世纪之初已经有了长足的进步,《物理评论》也有了40年的历史。但相对于欧洲的老牌大学、期刊,他们的影响力还是乏善可陈。两年前,波多尔斯基在加州理工学院与托尔曼、爱因斯坦合作的那篇光子箱论文也是在《物理评论》发表,结果只是石沉大海。为了不重蹈覆辙,波多尔斯基这次先向《纽约时报》透露了信息。这家有国际影响的大报一直在追踪爱因斯坦在美国的活动,得到消息如获至宝,立刻冠以醒目标题发出新闻。随着世界各地媒体的跟进,欧洲的物理学家们不可能再错过这篇“爱因斯坦攻击量子理论”的新论文。

在苏黎士的泡利火冒三丈。他立即给海森堡写信,对爱因斯坦的又一次故伎重演牢骚满腹:“我们都清楚,他每次这样做都是一场灾难。”他还刻薄地讥讽,如果是一个刚刚接触到量子力学的学生提出这篇论文中的反对意见,倒是蛮聪明的,会很有前途。

在荣格两年的精神分析帮助下,泡利的个人生活已经大为好转。他不再像过去那样花天酒地,也有了一个稳定的第二次婚姻。他暂时停止了专业的精神辅导,但对梦境解析的兴趣丝毫未减,还继续与荣格共同探讨。

泡利咄咄逼人的个性也有所收敛。他刚刚接受了高等研究院的邀请,即将赴美访问与爱因斯坦成为同事。这自然不是他出头惹是生非的好时机,所以他只是激励师弟出面维护哥本哈根的正统。海森堡很快写就了一篇反驳,但在听说玻尔已经兢兢业业地准备回应爱因斯坦后就压下了。虽然已经是诺贝尔奖得主,海森堡在玻尔面前依然自觉是小字辈。在这个关于量子力学本质的原则问题上,他乐于置身事外,旁观高手的直接对阵。

玻尔读到EPR论文后也觉得非同小可,立即停下手中一切工作,拽上他那时的助手罗森菲尔德(Leon Rosenfeld)日以继夜地讨论如何应对这新一轮挑衅。罗森菲尔德是比利时人。两年前,他在那里做量子力学的学术报告时,尚在比利时避难的爱因斯坦就曾向他谈起他与波多尔斯基和托尔曼合作的光子箱假想试验,询问对其中一个光子的测量如何能够直接导致另一个光子量子态的改变。

罗森菲尔德当时无法作答。这时他在哥本哈根发现玻尔也同样地焦头烂额,无法理清爱因斯坦的思路。他们俩整整花费了六个星期,全力以赴地对付这个头等大事。七月份,玻尔先在英国的《自然》杂志上发表了一个初步的回应,立刻引得《纽约时报》的关注。两位量子大师在物理学中的原则性分歧成为新闻界追逐的好题材。

玻尔的正式回应则发表在10月15日的《物理评论》上,相距EPR论文正好五个月。这个论文发表速度对于玻尔也相当罕见。他不仅选取同一个刊物,还干脆采用了同一个题目:《量子力学对物理实在的描述可以被认为是完备的吗?》。当然,他的答案与EPR针锋相对,是毫无疑问的肯定。

玻尔回应EPR的论文首页。

有意思的是,在这篇他独自署名、全文采用第一人称单数叙述的论文中,玻尔完全回避了EPR论文中由两个粒子构成的物理图像。他认为那个新的假想试验不过是爱因斯坦在1927年索尔维会议上双缝试验的翻版,换汤不换药。由此,玻尔在论文中又一次详细分析了他自己所称“人们已经熟悉了的”索尔维会议辩论。从单缝试验到双缝试验,他再次全面阐述了互补原理,论证量子力学中不确定原理之无法避免。

当然,玻尔与爱因斯坦最大的分歧还在于对“物理实在”的看法。

玻尔指出EPR给出的定义中“不对系统造成任何干扰”这个前提非常含糊,无法适用于量子的微观世界。正如他们在索尔维会议上已经确定的那样,如果在双缝试验的狭缝后面装上诸如云室一类的仪器进行测量,就会不可避免地干扰整个的系统。

而如果没有测量,也就没有物理实在。玻尔这一观点与EPR论文开宗明义宣布“存在一个于任何理论的客观实在”截然相反。他认为人类对物理实在的认识取决于测量仪器和方式的选择。对某些物理量测量的过程必然形成对系统的干扰,从而使得另一些物理量变得不可知。

但玻尔强调,这个“缺陷”不仅仅是出自对那些物理量的无知,更是由于在这种测量的选择下不可能明确地定义那些物理量——只要选择了测量粒子的位置,粒子的动量就无法定义,也就不成其为物理实在。因此,量子力学的这一局限是本体性的,不是只局限于人类的认知层面。

爱因斯坦的新假想试验中那两颗有着同一波函数的粒子属于同一个量子系统。对其中一颗粒子的测量不仅干扰了这颗粒子,也干扰了整个系统,从而同时干扰了另一颗粒子。这样,EPR的挑战便迎刃而解:那正是量子世界的必然。至于两颗粒子之间距离遥远、以光速尤不可及的困难,玻尔并没有专门涉及。他觉得那并不会对量子世界的特性构成障碍,不成问题。


波多尔斯基在论文发表之前向《纽约时报》透露消息的举动的确保证了他们这篇论文不至于无人问津。他的苦心却也只带来非常短暂的绩效。玻尔论文的发表不仅让海森堡、泡利省去麻烦,也一锤定音地为这个为期近十年的辩论下了最后的结论。在那之后,基本上没有人还会继续讨论这个话题。如果有人好奇地提起,也总会得到一个现成的回答:玻尔已经解释过了。

正如冯·诺伊曼已经严格地证明了量子力学中不可能还有未知的隐变量。

爱因斯坦对波多尔斯基的行为非常恼火。他罕见地给《纽约时报》去信谴责他们的新闻来源于未经许可的泄漏,非常不恰当。他声明自己从来不会在媒体上讨论尚未发表的科学结果,这不符合科学研究的规范。(当然,爱因斯坦自己无论以前在德国还是后来在美国都经常向媒体透露他的新进展。尤其是他在统一场论中时不时的“颠覆性革命”,曾一再引起新闻轰动。)

论文发表时,波多尔斯基已经在爱因斯坦和狄拉克的推荐下获得美国辛辛那提大学的职位后离开了高等研究院。他后来与爱因斯坦不再有个人联系。罗森在高等研究院逗留的时间长一些,继续担任着爱因斯坦的助手。他们在广义相对论、引力波等领域的合作卓有成就(详见《捕捉引力波背后的故事(之一):爱因斯坦的先知、失误和荒唐》)。罗森因之成为与爱因斯坦共同发表论文最多的物理学家。

在EPR论文上,爱因斯坦最为失望的还不只是波多尔斯基的写作风格和擅自行动。在他看来,玻尔再次剑走偏锋,将他对量子力学中局域性的忧虑转变为对不确定原理的怀疑。他们的论战又一次陷入鸡同鸭讲的僵局。

因为海森堡的不确定原理,人类对量子世界的认识犹如在昏暗的油灯下观察一头大象。我们只能迷迷糊糊地看到大象脑袋和尾巴的形状,却没法把它们同时看清楚。如果要凑近仔细观察,能明晰地看到大象脑袋像一块石头。那时候却又看不到大象尾巴,不知道尾巴会是个什么样子。如果换一个角度能真切地看到大象的尾巴像一根绳子,却又不可能知道那时的大象脑袋是个什么样子。

按照玻尔的解释,当我们凑近大象的脑袋时,那个像一块大石头的脑袋是一个物理的实在。但那时,大象的尾巴无法定义,便不是物理实在。如果我们是去观看大象的尾巴,那么尾巴成为细绳状的物理实在,而大象的脑袋却又不实在了。因为我们永远无法同时看清脑袋和尾巴,也就不存在一个客观的大象整体。我们对大象形状的理解与我们自己的主观选择息息相关。

正像埃伦菲斯特在1930年索尔维会议后发现,爱因斯坦早就接受了量子力学这个奇异的特性,不再怀疑不确定原理。在这新一轮质疑中,他与波多尔斯基和罗森别出心裁地安排了两头这样的大象。它们在一起相处后分开,彼此距离越来越远。在某一个时刻,地球上某一个人决定看看近处的那头象的脑袋,发现它长得像一块石头。就在那一瞬间,爱因斯坦他们指出,十万八千里之外的那另一头象也会突然呈现出石头的形状。

反之,如果这个人看到的是自己身边的大象是一根绳子,遥不可及的那另一头大象也会同时变成一根绳子。

两头大象似乎拥有特异功能,可以互相心灵感应。在爱因斯坦看来,这就如同海神波塞冬眉头一皱,千里之外立刻洪水滔天一样地荒唐。自泰勒斯、勒皮普斯、芝诺以降的哲人已经在这上面绞尽过脑汁:如果自然界果然如此,就无法建立严格的因果关系,也就无从认识、解释这个世界。只有具备可分离性和局域性,才可能有严谨的逻辑。

然而,在量子力学中,那共享着一个波函数的两个粒子之间丝毫不具可分离性。它们纵然天各一方,却依旧如胶似漆密不可分。

虽然EPR论文的题目大张旗鼓地设问“量子力学对物理实在的描述可以被认为是完备的吗?”并在文中旗帜鲜明地给出了否定性回答,爱因斯坦他们也不得不考虑到还存在另一种可能性。那就是量子力学本身其实是完备的,只是不具备局域性。他们的假想试验只证明量子力学或者不完备,或者非局域。二者必居其一。

但爱因斯坦无法接受一个违反局域性的科学。那样的话,量子理论中会有着经典物理不存在的某种超越空间的关联。他把这个自从“鬼场”起就让他牵肠挂肚的场景称作“鬼魅般的超距作用(spooky action at a distance)”。及至十多年后,他还会在给玻恩的信中念叨:我绝对不可能相信上帝会掷骰子,或动用起心灵感应。

对爱因斯坦来说,违反因果关系的超距作用只能是不合逻辑的无稽之谈。这样就只剩下一种可能性,那就是量子力学并非完备。


狄拉克在那年秋天也来到普林斯顿的高等研究院访问。因为语言和性格上的障碍,他在那里与爱因斯坦没有太多接触。他也没有太关注EPR论文,只是漫不经心地表示,如果爱因斯坦证明了量子力学不完备,那我们就只好再次从头开始。

在狄拉克眼里,量子力学面临的危机并不在于如何被“诠释”,而是数学上的“发散”。这是他随着量子场论的推进所发现的新问题:一些具体计算往往会得出物理量变成无穷大的荒谬结果,导致整个理论失去物理意义。这个真实的数学困难正让他一筹莫展。

只有薛定谔一如既往,仍然是爱因斯坦唯一的知音。

薛定谔读到EPR论文后立刻致信爱因斯坦,热情洋溢地夸赞老朋友终于抓住了量子理论的尾巴。他也当即成为玻尔之外唯一发表论文回应的知名物理学家。在接连发表的三篇论文中,薛定谔系统地总结了量子力学所处的现状和面临的挑战,并为爱因斯坦描述的那种以超越空间距离、因“鬼魅般超距作用”而不可分离的状态赋予一个形象的名称:“纠缠(entanglement)”。


(待续)