引力波三维波形,在顺着传播方向上呈现圆柱形。 |
也正是因为这个柱面波,激光干涉仪才有了其用武之地。
柱面的引力波在与其传播方向垂直的横截面上表现为在该面上的两个垂直方向运动方向相反。东西方向在被拉长时,南北方向正好在被压缩;反之亦然。引力波经过时,横截面的空间便不断地在相继拉长和压缩。这样如果我们测量东西方向的长度与南北方向的长度,因为它们一个在拉长、一个在压缩,正好能够看出长度上出现不同。
引力波波形横截面的运动模式,在互相垂直的方向上运动方向正好相反。 |
费曼当年演示他的“粘珠论”画出的草图便是两个垂直方向的粘珠会有相反方向的运动。韦斯因此设计出他的激光干涉仪:在两个互相垂直的方向悬挂反射镜,测量两个光臂距离之差别而探测到引力波。
如果引力波恰巧从天顶(或地底)到来,那么沿着地面修建的干涉仪长臂正好是在其横截面上,两个长臂的长度一个会拉长另一个则会缩短而出现差别。这时的测量灵敏度会最高。如果引力波来自其它方向,那么干涉仪只能测到一定角度修正之后的效果,灵敏度大大折扣。而顺着地面而来的引力波就基本上不可能被测到了。
问题是,需要什么样的灵敏度才能实际地测量到引力波?
初生的婴儿躺着就可以自己手舞足蹈。小家伙逐渐能翻身、坐起、站立、行走、奔跑、跳跃……我们看着孩子这样地长大,不会去想到这是一个与重力较劲的过程。我们脚底下的地球非常庞大,它的质量所产生的引力足以把我们牢牢地束缚在地面。但这引力同时却也相当弱小,我们并不需要多么粗壮的肌肉就可以——至少暂时地——战胜它。
强壮的肌肉还可以让我们能够做更多的克服地球引力的事情,比如提举重物。人类还发明了各种工具,从简单原始的杠杆、滑轮到现代的巨型起重机。它们和肌肉一样,都是利用电磁作用力降服重力。至少在地球上,重力在电磁力面前不是对手。
不仅引力与电磁力相比本身就显得微弱(严格来说,它们之间并不具备直接可比性,故为“显得”),与相应的电磁波相比,引力波却又更弱了好多。
当年只有一支笔、几张纸的爱因斯坦对付复杂的广义相对论场方程还没有很好的数学手段。但他知道,相对论效应只在非常高速、非常大质量情况下才会凸显。在低速、小质量条件下便回归为经典牛顿力学。这样,可以从已知的经典解出发,用数学上级数展开方式逐步引入速度、质量带来的修正,便可以逐渐趋近相对论的结果。
在求解水星公转轨道近日点的进动时,爱因斯坦发现主要的修正来自水星的速度。修正项级数取决于水星速度与光速之比(v/c)。第一级修正值为零,广义相对论效应在第二级((v/c)2)中出现。修正后的数值果然比牛顿力学结果更符合实际观测,解开了一个物理学家困惑多年的谜,也是广义相对论的第一个成功验证。
他如法炮制,但展开到第四级((v/c)4)后依然没能看到引力波的踪影。于是他向施瓦西抱怨说这是因为引力不同于电磁力,没有偶极子。电磁场中有正负两种电荷,可以组成现成的偶极子。最强的电磁波便是由偶极振荡的辐射而产生。引力场来自质量。因为只有正质量而没有负质量,故不存在与电磁波对应的偶极振荡引力波。
爱因斯坦当时这个解释本身其实并没有错,他只是在引力波是否存在的问题上有点操之过急。我们现在知道引力波的确不可能由偶极子振荡产生,而是更高阶的四极子。在数学上需要引入更高的((v/c)5)展开项才能出现。因为通常情况下星体运动的速度远远小于光速,这个项的幂指数越高,修正效应越小。所以,除非速度接近光速,引力波的效应是微不足道的。
再因为是更高阶的效应,四极子振荡所产生的辐射强度远远小于偶极子。因此,即使高速情况下引力波的强度对比于相应的电磁波也会弱很多。在爱因斯坦研究的稳定轨道条件下,完全可以忽略不计。这正是我们不必担心地球绕太阳公转的运动会因为引力波能量损失而发生轨道塌缩的根据。
那么,韦斯他们又怎么能指望探测到引力波呢?
索恩自从在那本《引力论》教科书中轻率地否定激光干涉仪的灵敏度可能探测到引力波而被韦斯在旅馆房间里开小灶“教育”之后,就一直致力于这方面的研究。与爱因斯坦不同的是,他不仅有更成熟的现代数学工具,还可以用威力越来越强大的超级计算机进行模拟计算。
我们的宇宙是一个非常热闹的世界。除了像太阳系般的稳定轨道运动之外,还有太多的丰富多彩的“事件”,诸如超新星爆发、星体碰撞、黑洞吞噬等等。它们也都会引发不寻常的引力波。经过多番计算,索恩发现最有可能探测到的来自双星系统的崩塌:两个黑洞组成的双黑洞、一个黑洞和一个中子星、双中子星……等等。黑洞、中子星的双星系统之所以最引人注目,是因为它们的质量密度非常大,广义相对论效应非常强。两个这样的星体接近时,它们的速度也会越来越快,以至于接近于光速而使得(v/c)的比值不再那么极端渺小。
泰勒、赫尔斯和韦斯伯格等人对中子双星的追踪观察已经让这样的计算摆脱了纸上谈兵的困境,成为获得了验证的现实。双星系统的轨道的确在严格地按广义相对论描述的那样因为引力波辐射损失而逐渐塌缩。在这个过程中两个星体会越来越接近,速度越来越快,而发出的引力波也越来越强。直到最后那一刻,两个星体直接撞上、合二为一,激发出一个最强烈的引力波脉冲。然后,一切又会再度趋于平静。
美中不足的是,即使是那“惊天动地”的碰撞,所激发的巨大引力波“海啸”在抵达地球时也会已经耗散得几乎虚无缥缈。因为这些黑洞、中子星离我们都是异常地遥远。(这当然也是我们的福气,否则我们的太阳系没法稳定地生存。)
正如泰森在国会作证时所指出,引力波脉冲到来时,不过是把“绕地球一千亿圈的距离……改变不到一根头发丝厚度”。地球的周长大约4万千米。乘以一千亿是4x1015千米,大约是400光年。也就是说,我们要在光需要花400年才能走过的距离上寻找“不到一根头发丝”的变化。这大约需要达到10-22的灵敏度。
换一个说法是,LIGO的臂长是4千米,10-22灵敏度意味着我们要能测出这个臂长发生了比质子直径小一千倍的变化。这个精度要求在当时以及现在所有精密测量中都是绝无仅有的。
而也如泰森所言,因为这个变化只是来自双星合并那一刹那的辉煌,只有一个短短的、零点几秒的脉冲可供我们捕捉。
LIGO计划中所要求的2亿美元预算,韦斯、德瑞福、沃格特等人孜孜不倦地追求,便都是为了实现这个10-22灵敏度的目标。
巴里什接手LIGO后几乎立刻就看出沃格特申请的2亿美元——虽然听起来庞大——远远不够用。经验丰富的巴里什系统地审视了现有的团队、设计、技术方案,发现他们无法胜任10-22的目标。他必须重新组织团队结构,改变管理方式,更新技术手段,甚至将有些已有的设计重新从头再来。但迫在眉睫还是要力挽狂澜,挽救这个濒临死亡的项目。偏偏在这一点上他的处境突然变得双倍的艰难:他不仅要重新赢得基金会和国会的信心、信任,还必须说服他们反过来大幅度地增加预算。
经过一番斟酌,巴里什决定铤而走险,采取“丑话说在前头”的策略,乘着基金会对他这个新官还比较宽容的短暂“蜜月”机会,摊牌提出需要把预算增加至3亿美元。当然他不是只伸手要钱,还提出了沃格特一直未能提供的具体实施计划:
首先在两个已经选定的地点立即开工,在四年内完成实验室建筑、干涉仪长臂需要的管道和真空系统等一系列基础设施。同时继续在实验室里改进、完善激光、探测仪、镜片、电路等仪器。等基建完成后,再用两年半的时间在现场装置、调试这些仪器。这样,正好在世纪之交到来时,LIGO就可以开始正式运行,万事俱备等待着引力波的到来。
不过那时完成的还只是一个初期的“天文台”(initial LIGO),其主要目的是完成所有的安装和调试,进入实际运作状态以摸索、掌握所需要的各种技能和管理策略。这个天文台的的灵敏度还不足于10-21。是否能探测到引力波呢?这取决于能否凑巧碰到有距离很近的双星合并。如果运气好赶上了,也许就能测到。但那只是一个过于乐观的期盼,是一个有可能但不现实的目标。
巴里什计划的关键是在初期天文台的调试、运作期间,原有的科技团队还同时进行仪器的全面升级、现代化,准备推出下一代的增强版天文台(advanced LIGO)。大约在2010年左右,初期天文台将停止运作,其内部所有仪器全部拆除,更换为升级版的新仪器。这个增强版将会大大增强灵敏度,冲击10-22,是真正探测到引力波的希望。
1994年那个夏天,巴里什和索恩在首都华盛顿特区展开魅力攻势,竭尽全力地游说,终于赢得了基金会的首肯。基金会新上任的主管还罕见地亲自为他们背书,向上级推销这个计划。奇迹般的,3亿美元的新预算很快得到了通过。
不久,华盛顿州的干涉仪所在地破土动工。1995年初,路易斯安娜州选址也开始了建设。韦斯的小小激光干涉仪终于迈出了离开大学实验室、走向现实大科学的第一步。
(待续)
科普
No comments:
Post a Comment