Tuesday, June 30, 2020

量子纠缠背后的故事(之三):乌云背后的一线亮光

19世纪后期,物理学不仅在走向那时的辉煌顶点,也开始形成正规化的教育体系。欧洲的大学纷纷告别教授各自经营小作坊的方式,成立起有规模的正式实验室。英国剑桥大学在1874年也有了物理实验室,聘请麦克斯韦为第一任教授——也就是实验室主任。

麦克斯韦在任内花了很多时间整理一百年前的英国化学、物理学家卡文迪许(Henry Cavendish)大量从未发表的笔记,对这位前辈深为叹服,遂决定将实验室命名为卡文迪许实验室。当然,这个实验室的创建资金也来自卡文迪许家族的一个贵族的捐赠。

1879年,年仅48岁的麦克斯韦病逝。虽然他的工作不像卡文迪许当年那样不为人所知,那时电磁波还未被证实,他的电磁、统计等理论的重大意义也没来得及被物理学界充分领会。

在卡文迪许实验室接替麦克斯韦的是瑞利男爵(John William Strutt, 3rd Baron Rayleigh)。今天的人如果对他的名字有印象,多半是因为解释“天空为什么是蓝色”中不可避免会提到的“瑞利散射(Rayleigh scattering)”。瑞利的贡献远不止光散射理论。1904年,他因为发现大气中的氩元素和对气体密度的研究获得诺贝尔物理奖。

1900年6月,当普朗克还在为他和维恩的黑体辐射定律得意之时,瑞利看出了内中的蹊跷:当黑体的温度升高时,辐射频谱的峰值会从红外向更高频率的可见光转移,同时各个频率上的辐射强度也应该有不同程度的增高。但在普朗克-维恩定律中,低频段的辐射强度随温度升高却会减少。瑞利觉得这不合理,因此也对普朗克夸下的海口大不以为然,认为后者所谓基于热力学定律的推导不过只是推测。

瑞利自己找到一个更简单的方法。

理想化的黑体在现实中是不存在的。(将近一个世纪之后,天文物理学家证实我们的宇宙作为一个整体的确是一个标准的黑体。参阅:《宇宙膨胀背后的故事(廿五):新生宇宙的第一张照片》。)19世纪的物理学家找到了一个绝妙的近似,就是在一个封闭的腔体上开一个小洞。外界经过这个洞进入腔体的辐射很难再逃出来,最终会被腔体吸收;而腔体内部的热辐射总会从洞中逸出。这样,在腔体保持一定温度下测量从洞中出来的热辐射,便可以测量黑体的频谱。

在麦克斯韦揭示热辐射就是电磁波之后,瑞利觉得结合麦克斯韦、玻尔兹曼的统计理论可以直截了当地得出黑体辐射的规律:黑体的空腔内布满了电磁波,就像是一定体积内的气体,正是统计物理的用武之地。

统计力学中有一个简单但强有力的“能均分定理(equipartition theorem)”:在一个处于热平衡的系统中,各个运动自由度都会具备同样的动能,与温度成正比。虽然叫做“定理”,这一法则却并不是通过严格的数学推导而来,而是基于对平衡态的理解:如果某一个自由度的动能大于另一个自由度,该系统便没有处在平衡态。动能会自动从前一自由度传送到后一个。所以,这更是一个“原理”,在19世纪末被广泛运用、接受。

瑞利认为他只要好好地数一数空腔内电磁波的自由度,就可以通过能均分定理推导出黑洞的辐射频谱。这一下不打紧,他很快得出一个非常简单,同时却也异乎寻常的结论:辐射的强度与频率的平方成正比。也就是频率越高辐射越强,导致几乎所有能量都会集中在紫外等高频段。这样,如果把所有频率的辐射强度全算上,黑体辐射的总能量是无穷大。

这显然是一个荒唐的结果。瑞利在他最初的论文中不得不无中生有地引进一个附加因子消除高频段的辐射强度,并强调他的推导只适用于低频段。但他的这个推导的确简单直接,是能均分定理的必然结果,比普朗克所打的包票更为靠谱。由此导致的结论清楚地表明热力学——能均分定理——出了大问题。几年后,物理学家埃伦菲斯特(Paul Ehrenfest)把它形象地称作“紫外灾难(ultraviolet catastrophe)”。

也正因为这个问题的严重,开尔文勋爵把它列为物理学的第二朵乌云。

瑞利直到五年后的1905年才给出完整的定量公式。但他这时又犯了一个低级错误,被年轻得多的同行金斯(Sir James Jeans)指出。因此他的公式称为“瑞利-金斯定律”。这个定律虽然简单明了,却只能在低频率极限的一个小角落里可以与实验数据符合,整体上却惨不忍睹,远远不如原始的维恩定律。

绝对温度5800度的黑体辐射频谱(横坐标为频率,纵坐标为强度)。蓝色实线是普朗克定律(与实验完全符合),红色短划线为维恩定律,黄色点虚线则是瑞利-金斯定律的结果。

无论是维恩还是瑞利,他们的定律都在1900年底被普朗克发表的新黑体辐射定律取代。普朗克定律因为与实验数据完美的符合而被普遍接受,没有受到什么质疑。

直到五年后。


爱因斯坦在1905年发表的第一篇论文后来被普遍称为“光电效应论文”。其实,这篇题为《关于光的产生与变换的一个启发性观点(On a Heuristic Point of View about the Creation and Conversion of Light)》的论文有17页的篇幅,关于萊纳德的光电效应实验的解释在第14页才出现。那只是爱因斯坦列举的可以为他新观点佐证的一个例子。

爱因斯坦1905年发表的“光电效应论文”。

论文的主要内容其实是对普朗克五年前提出的黑体辐射理论的分析,并以此提出关于光的本质的“启发性观点”。他开篇便旗帜鲜明地指出:光的波动理论在描述纯光学现象上已经自证完美,也许永远也不会再被新的理论取代。然而,也可以想象在光的产生、变换方面,波动理论会导致一些矛盾。因此,爱因斯坦表明,对于黑体辐射、荧光、光电效应等现象,如果假设光的能量在空间是不连续的,就会容易理解得多。

接着,爱因斯坦提出了他的新思想:“根据这里提出的假设,当光从一个光源向外发出时,其能量不是连续地分布到越来越广泛的空间,而是由一些有限数目的能量子组成。能量子只存在于空间中局域的点上,在运动时不会再拆分,也只能作为整体被吸收或产生。”

这是一个与麦克斯韦电磁波所描述的光截然相反的概念。波动的光在空间上是连续、弥漫的,不会局域于任何点。光波传播时其能量(即光强)随着传播范围的增大会逐渐衰减(拆分),并能以任意小的份量被吸收、再发射。

在光的波动说已经统治了整整一个世纪,并被无数的实验证实后,爱因斯坦竟然“复活”了牛顿的微粒说。

爱因斯坦的论文分为九节。第一节的小标题是“关于黑体辐射理论的困难”。他不知道瑞利在五年前的论文,但与瑞利一样意识到普朗克的逻辑不靠谱而独立地发现了瑞利的定律(那时瑞利还没有发表定量的公式,也还没有金斯。因此,“瑞利-金斯定律”应该被命名为“瑞利-爱因斯坦-金斯定律”)。有所不同的是,他没有像瑞利那样试图凭空找一个避免“紫外灾难”的附加因子,而是直接宣布这个结果表明经典电磁、统计理论的重大缺陷,亟需新的思维方式。

这时的爱因斯坦当然比普朗克更具优势。他不仅拥有近似成立的维恩定律和实际的测量结果,还有普朗克已经拟合的,与数据天衣无缝的数学公式,即已知的“答案”。他所需要做的,不是寻求一个新的公式,而只是如何从理论上合理地诠释普朗克的结果。

瑞利和爱因斯坦根据经典的能均分定理推算黑体空腔中辐射时,主要的工作便是计算各个频率上所能有的模式数目,那就是自由度。想象一根提琴的弦,当两头分别被琴和演奏者的手指固定之后,它所能演奏出的曲调——频率——是有限的。琴弦的波动频率必须能恰好在那两头没有振动。这种有固定边界的波叫做“驻波(standing wave)”。

显然,在一定长度的琴弦上,驻波的波长会有限制,不可能超过弦长本身(严格来说是不能超过弦长两倍)。而反过来,波长越短,就越容易在琴弦上形成驻波。

黑体辐射的空腔同样有一定大小,热辐射便是其中的驻波。因为频率是波长的倒数,空腔中辐射的频率有一个下限。但在高频部分,其驻波的数目会越来越多:自由度的数目随频率增长。这样,能均分定理给每一个自由度同样的能量,便导致辐射能随频率而增长,发生紫外灾难。

认识到这一点,爱因斯坦便重新审视恰恰是在那个高频段与实验数据符合得相当好的维恩定律。

他利用这个已知的定律倒推回去,赫然发现空腔里的辐射其实与普通的理想气体统计规律一致,唯一的区别只是空腔中的辐射不像气体会有一个确定的原子数目。取而代之的是一个奇异的组合:总能量除以一个参数。而这个参数不是别的,正是普朗克绝望之中引入的那个与频率成正比的最小值——量子。

爱因斯坦恍然大悟。他在论文中写道:单一频率的光在热力学中表现得就如同有固定数目的能量子。因此,应该考虑光在产生、转化过程中也会表现得像分立的能量子一样。

也就是说,光其实是由光量子组成。单个的光量子具有与普朗克的量子一样的能量,与光的频率成正比。它们不会再拆分,而是被整体地吸收或产生。(爱因斯坦一直把他的光微粒叫做能量子或光量子,直到1926年物理学界才开始采用一个新的名字:“光子(photon)”。)

这便是他论文题目中所言的“启发性观点”。


爱因斯坦深知这个观点的革命性。因此,他在论文的最后几节提供了更多的证据。其中之一便是五年前曾让他欣喜若狂的光电效应。

萊纳德实验发现的那一系列麦克斯韦理论无法解释的现象在这个新观点面前均迎刃而解:与光的电磁波理论不同,爱因斯坦的光量子所携带的能量取决于频率。因此紫外光的光量子能量比可见光的大很多。金属表面的电子不是在与电磁波的共振中获得能量,而是整体地吸收一个光量子的能量而逸出。在吸收一个紫外光量子足以逃逸的金属里,吸收一个可见光的光量子却未必能获得足够的能量。因此,光电效应与入射光的频率息息相关。

同时,入射光的光强体现的是光量子的数目(也因此决定光的总能量)。这样,即使把紫外光的光强降低到微乎其微,只要还能有那么几个光量子能被电子吸收,就可以观察到光电效应。相反,如果可见光的光量子能量不足以“打下”电子,那么即使把光强加得再大,用再多的光量子轰击,也打不下一粒电子——因为电子一次只能吸收一粒光量子。

这些萊纳德让人们摸不着头脑的结果,在爱因斯坦这里得来全不费工夫。

光电效应之外,爱因斯坦还顺便解决了另一个历史问题。半个世纪以前,爱尔兰贵族斯托克斯(Sir George Stokes, 1st Baronet)研究一些能发荧光的矿石,得出结论荧光是矿石吸收了入射光之后二度发射的光。他发现,再发射的荧光的频率总会比入射光的频率低。有些矿石似乎不需要入射光就能发光,那是因为它们吸收了不可见的紫外光而转换发射出可见光。这个荧光规律(Stokes' Rule)一直令人不解:矿石吸收入射光后发出不同频率的荧光不奇怪,但为什么它们就不能发出频率更高的荧光?

在爱因斯坦的新观点中,光的频率便是光量子的能量。斯托克斯的定律也就变得很显然:荧光体在吸收一个光量子再发射另一个光量子的过程中能量可能会有损失但不会增加。因此荧光的频率(能量)必然低于入射光。


很有意思的是,爱因斯坦这篇论文中其实没怎么涉及普朗克和他的新黑体辐射定律。他只是必要性地简单复述了一下普朗克的工作,不痛不痒地承认其结果与现有的实验完全符合。

这非常不像爱因斯坦的风格。在那些年里,他已经得罪的远远不只是自己大学的教授们,还包括当时物理学界的诸多名流。

就在四年前,他发现莱比锡大学的物理学家德鲁德(Paul Drude)的一个错误,立即毫不留情地去信批驳。他当时还处于失业困境,因此也没忘记同时附上一封求职信。德鲁德大度地回应,说明他没有错,而且与他同系的玻尔兹曼也同意。当然,他也没有理睬那封求职信。爱因斯坦大为光火,在私信里将德鲁德和玻尔兹曼骂得狗血淋头,发誓要发表论文狠踹这些权威的屁股。(爱因斯坦给德鲁德的信件失传,他的质疑是否成立不得而知;他随后的确发表过讨论玻尔兹曼统计理论的论文,后来自己也承认没有什么学术价值。)

作为刚刚以平庸的成绩勉强大学毕业、找不到工作的社会青年,爱因斯坦的表现完美地诠释了“英勇的施瓦本人无所畏惧”形象。

1905年的爱因斯坦在专利局工作时并不孤单,还有一个大学期间认识的好朋友贝索(Michele Besso)。贝索比爱因斯坦大六岁,是个工程师,后来在爱因斯坦的鼓动下也来到专利局谋生。两人情投意合,爱因斯坦只要有了新思想都会立即与贝索分享,认定后者是他最好的讨论对象。在那年后来发表的狭义相对论论文中,他还曾特意致谢了贝索的帮助。(那年的四篇划时代论文中,这是唯一的一个致谢,也凸显了爱因斯坦孤军奋战的处境。)

当时不为人知的是贝索在光电效应论文中的帮助也超过了倾听和对谈:更为成熟、稳重的贝索劝说爱因斯坦删去了直接批驳普朗克的内容。20多年后,贝索曾在一封信中回顾那个年月。在已经知道这篇论文的历史性影响之后,贝索向爱因斯坦承认:“在帮助你编辑你关于量子问题的通讯时,我剥夺了你的一部分荣耀;但另一方面,我也为你争取到一个朋友:普朗克。”

于是,如果没有贝索的“帮助”,爱因斯坦的论文中会如何评论普朗克成为一个历史之谜。因为没有明确与普朗克“划清界限”,爱因斯坦的论文被普遍看作普朗克率先提出的“量子论”的更进一步延伸,失去了其实际革命性的锋芒。当量子力学在20年后开始异军突起时,普朗克被普遍认为是其鼻祖。贝索因此颇为后悔,他认为这个桂冠非爱因斯坦莫属,而只是因为他而被剥夺。

而他那“另一方面”也同样地合情合理。虽然施瓦本人无所畏惧,在专利局中蹉跎的爱因斯坦也真经不起同时得罪物理学界所有的泰斗。在他后来的物理生涯中,被这么争取到的朋友普朗克的确提供了相当大的帮助。


(待续)

Thursday, June 25, 2020

量子纠缠背后的故事(之二):普朗克的绝望之举

光是人类生活中不可或缺的因素。西方圣经中的上帝在开天辟地后,首先便创造了光:“上帝说要有光,于是就有了光。”只是这个“就有了”的光是什么,上帝没有解释。从古希腊开始,人类对我们如何能借助光看到五彩缤纷的世界提出过各种猜测,莫衷一是。

17世纪的牛顿以发明微积分、经典动力学闻名,是那个时代很少有的注重理论的物理学家(当时被称作数学家)。但他自己也曾亲手做过一些实验,主要便是研究光的特性。他通过系统的棱镜实验证明颜色是光本身的性质【关于牛顿的棱镜实验,参阅《宇宙膨胀背后的故事(之四):察颜观色识星移》】,并提出光束其实是由微小、肉眼看不见的粒子(corpuscle)组成。

这种粒子在真空或媒体中传播时不受任何作用力,因此按照他的惯性定律会走直线。当它们穿越不同媒介的界面时,牛顿假设这些粒子会受到一种未知的力作用,因而方向发生偏移,即“折射(refraction)”。他提出不同颜色的光微粒的质量略有不同:红光最大、紫光最小。根据他的动力学,它们受力后有不同的加速度,因此偏移程度不同。这样他便能解释棱镜区分白光中各种颜色的“色散(dispersion)”现象。

当时人们已经观测到光还会发生“衍射(diffraction)”,即光在经过障碍物时不是完全按照障碍物边界所确定的直线行进,而是会有微弱的一部分光“绕”进了障碍物的阴影里。牛顿同样把它归因于障碍物边界对光粒子的作用力导致。

相对于折射,牛顿对衍射的这个解释十分牵强。而衍射恰恰是波动的特征。我们在大厅里听演讲,不会被其中的柱子阻挡。因为声波可以通过衍射绕到柱子后面。与牛顿同时代的虎克(Robert Hooke)、惠更斯(Christiaan Huygens)等人早就提出光也是一种波,并非牛顿的微粒。

光的微粒说、波动说便成为17、18世纪的一大科学争执。虽然惠更斯的波动理论在解释光的折射、衍射行为中更为自然,但牛顿的威望保证了他的微粒说一直略占上风。

直到1803年11月24日,牛顿去世160多年后的一天。伦敦的英国王家学会迎来了一个新的年轻天才。杨(Thomas Young)那时刚刚30岁。他14岁时就把圣经翻译成13种不同语言。20岁时自己解剖牛眼,发现眼睛聚焦、成像的秘密,开创了生理光学。接着,他留学德国,在哥廷根大学获得“物理、手术、助产博士”学位。后来,他在研究物理、治病救人之余,兴趣又会转向语言学,是最早翻译埃及象形文字(hieroglyph)、提出“印欧语系(Indo-European languages)”概念的先驱之一。因此,他被誉为“最后一个懂得一切的人(The Last Man who Knew Everything)”,可能是最早赢得这个称号的历史人物之一。

那天在王家学会,杨展示的是一个极其简单、如他所言“只要有太阳光就能做”的实验。他拉上所有窗帘,使屋子里一片漆黑。接着,他在窗帘上扎一个小洞,放进一束纤细的阳光。然后,他将一个宽约两毫米的小纸片伸进光束,观看纸片的影子。那个纸片应该完全挡住那两毫米的光,留下相应的黑影——最多只是黑影边缘上有一些来自衍射的模糊。

杨展示的结果正好相反。纸片影子的正中,应该最黑的地方却是明亮的。从影子中间到边缘有着一道道彩色的条纹。杨解释说,这些条纹是因为太阳光的色散。如果他在光束前面置放棱镜,只用单色的光做这个实验,那么他们在影子处看到的就会是明暗相间的条纹。

杨在1807年出版的专著中的一些插图。上方有眼睛的构造,下面是光的各种干涉条纹。

这样的条纹物理学家非常熟悉。观察被风吹皱的池水,能看到水波的荡漾。如果水波经过一块石头,就会在石头后面看到与原来的水波不一样的细碎波纹。那是由于水波分别从石头的两边绕过,在石头后面相遇时互相干扰,造成水波有些地方增强有些地方减弱的效果。这个现象叫做“干涉(interference)”,是波动的特征之一。

杨所展示的,便是光束从纸片的两边“绕”过后,也在那后面发生了干涉现象。牛顿的微粒说好歹能勉强解释光的折射和衍射,对干涉却完全无能为力。杨的这场演讲标志着微粒说终于退出历史舞台。惠更斯的波动说被普遍接受:光束不是由微粒组成,而是一种波。


半个多世纪后,1864年12月8日,站在王家学会同一个讲台上的是苏格兰人麦克斯韦。那时,杨早已去世。

麦克斯韦在会上阐述了他那著名的方程组,将那时分立的电、磁相互作用完美地统一起来。在他之前,法拉第(Michael Faraday)已经通过实验发现变化的电场会产生磁场,变化的磁场也能产生电场。在麦克斯韦的方程里,这两个过程相辅相成,形成连续传播的电磁波。当麦克斯韦计算这个电磁波的速度时,惊喜地发现便是当时已知的光速。于是,他骄傲地宣布,光其实就是一种电磁波。

1869年的麦克斯韦(左)和夫人。

这一重大发现震惊了整个物理学界。柏林的普鲁士科学院在1879年公开悬赏,重奖能在1882年3月1日前证实麦克斯韦的电磁波的人。结果,没有人赢得这个奖。当时做了一番准备但畏难而退的赫兹迟至1887年才完成这一壮举——并同时发现了光电效应现象。

赫兹在试验中实现的便是我们今天日常生活中熟悉的无线电波。与光波一样,那也是电磁波的一种。作为纪念,电磁波的频率便是以“赫兹”作为单位。当有人问这种电波有什么实际用途时,赫兹无可奈何地答道:“没有任何用处。这只是一个实验,证明了麦克斯韦的正确。”

虽然赫兹在这一成就对社会进步所能产生的影响严重地缺乏前瞻力,他对科学的信心则毫不含糊。两年后,他凯旋式地宣布:“从人类观点而言,光的波动理论已经毫无疑问(“The wave theory of light is from the point of view of human beings a certainty.”)。”

其实,在19世纪末,乐观是物理学家的共性。他们普遍认为物理学已经达到完善境界,剩下的只是进行越来越精确的具体测量工作。1900年4月27日,发明绝对温度制的开尔文勋爵(William Thomson, 1st Baron Kelvin)在王家学会上发表了一篇流传广泛的演讲,指出在物理学的晴朗天空中,只存在两朵乌云尚待解决,即“以太”和“黑体辐射”两个未解的难题。

这两朵乌云恰恰都源自麦克斯韦的电磁学理论。

水波来自水分子的集体振荡。声波则是空气分子的集体振荡。波动不是一种独立的运动,而是需要某种承载这个波的媒介物质以协同的震荡方式形成。如果光是波动,自然也需要一个媒介。这正是当初牛顿反对波动说的一大理由:光从太阳、星星来到地球,很难想象整个宇宙会充满着这样一个我们没有觉察的媒介物质。而且,如果有的话,也应该在太阳系星体运动中反映出来。牛顿的引力、动力学在天体运动中的精确成功说明没有这样的物质存在。

惠更斯只好假想有一种看不见摸不着的以太(aether)。它像水、空气一样通过振荡传播光波,但除此之外不参与任何物理作用,因此不影响牛顿力学的应用。然而,所有寻找以太的努力都失败了。1887年,美国物理学家迈克尔逊(Albert Michelson)和莫雷(Edward Morley)进行了精确的干涉仪实验,没能发现地球和以太之间的相对运动,基本上排除了以太存在的可能。

这第一朵乌云最终由爱因斯坦在1905年那个奇迹年所发表的第三篇论文清除。他指出,麦克斯韦理论中的电磁波与水波、声波有显著的不同,是可以自己在真空中传播而不需要任何媒介物质。由此带来的相对速度问题则可以通过他新创立的狭义相对论圆满解决。

那另一朵乌云,则如同爱因斯坦所言,需要比相对论更具有革命性的观念突破。


黑体辐射(black-body radiation)是18世纪中叶德国物理学家基尔霍夫(Gustav Kirchhoff)发现的一个规律。

当铁匠将铁器放在炉火中加热时,原来暗黑、不发光的铁器会随着温度升高逐步呈现桔黄、通红等色彩。经验丰富的工匠只要看看颜色就能判断出铁器所在的温度,俗称“看火色”。作为物理学家,基尔霍夫将这个生活经验提炼成一个抽象的物理问题,叫做黑体辐射。

他所说的黑体是理想化的材料,能够完全吸收来自外界任何频率的热辐射,没有任何反射(所以叫做“黑体”)。同时,它也可以通过自身的热辐射与所在环境达成热平衡,即保持同一温度。根据简单的热力学定律,基尔霍夫推断,这样的黑体的热辐射强度只会与频率、温度有关,而与物体本身是金属还是木炭、固体还是液体等等没有关系。

这样,在任何给定的温度下,黑体辐射在每个频率上的辐射强度都会是一定的,可以画出一条普适的频谱曲线。基尔霍夫自己没能推算出这个曲线的形状。但他强调这是一个极其重要的研究领域,希望物理学家为此努力。

几乎同时,麦克斯韦发现了电磁理论。于是,基尔霍夫黑体的热辐射也就是包括发光在内的电磁辐射。我们平时看不到周围物体的发光,不是因为它们没有热辐射,而是室温下的黑体辐射主要处于红外波段,只有带上特殊的红外夜视仪才能观察到。当物体被加热到摄氏500度高温时,其热辐射的高峰才会从红外转为可见光。这时,我们能直接看到其发光,颜色也会随温度升高逐渐从紫蓝演变成红色。

虽然理想的黑体是一个抽象概念,并不真的存在。日常生活中物体,包括铁匠炉中的铁器、砖窑里的土坯,都在一定程度上接近于黑体,也就可以看火色。不仅如此,我们通过看“火色”就能知道太阳的表面温度在5000度以上。


在基尔霍夫之后几十年里,德国的物理学家果然将黑体辐射作为重点科研项目,设计出各种方法测量其频谱。1893年,柏林大学的维恩(Wilhelm Wien)在实验基础上总结出一个经验公式,可以很好地拟合当时的数据。

那时,普朗克已经是40出头的中年人,在柏林大学接替了基尔霍夫的教授席位。他为维恩这个公式赋予热力学的理论基础,使其成为黑体辐射的正统理论。该公式也因此被称为“普朗克-维恩定律”。对这个突破,普朗克信心满满。他在1899年的德国物理学会会议上夸下海口:这个定律其实与热力学第二定律等价。如果出问题,那么整个热力学体系也就会麻烦了。

1906年的普朗克。

他的大话竟然没能挺过一年。1900年10月7日,柏林工业大学的实验物理教授鲁本斯(Heinrich Rubens)夫妇应邀来到普朗克家做客。在两位夫人聊天之际,两个物理学家躲进了书房。鲁本斯透露,他们在黑体辐射测量上已经推进到新的、更低频率的远红外波段,得到的数据与普朗克-维恩定律所预测的相差极大。

普朗克深感事体重大。那天晚上他一个人在家仔细研读这些新数据,很快发现他只要修改一下普朗克-维恩定律的数学形式,就能同时与过去和新的数据完美符合。问题是,他已然宣布既有的定律是热力学的唯一结论。现在他又如何才能解释这个变化?

更迫切的问题是他没有时间。

仅仅12天后,德国物理学会召开大会。鲁本斯的合作者做了他们最新成果的报告。他们展示的曲线果然与普朗克-维恩定律大相径庭。之后,普朗克不得不站出来应对。他坦承一年前的大话可能说过了头,热力学第二定律也许并不能确定地导致普朗克-维恩定律。在新的实验数据面前,后者显然不够正确。

接着,他话音一转:请容许我展示一个新的规律。他随即亮出那天晚上根据新数据所推出的新公式,果然与实验数据几乎天衣无缝。

普朗克的新公式是在已知实验结果的情况下倒推、拟合而得,作为理论学家属于“作弊”。为了能找到一个理论上站得住脚的缘由,他在紧接着的几个星期里绞尽了脑汁。终于,在12月14日的又一次会议上,他给出了一个至少是数学推导上的根据。他说,如果我们在计算中假设黑体吸收、发射电磁波时的能量有一个与频率成正比的最小值,就可以得出那个完美的新公式。

他把那个最小值叫做“量子”(quantum,这个名词在德语中只是“数量”的意思)。

可能因为新的公式与实验结果符合得太优美,在座的物理学家没有纠结普朗克的推导过程。从那之后,这个新公式被正式称为黑体辐射的“普朗克定律”。而那之前的“普朗克-维恩定律”则静悄悄地退位为“维恩定律”,仿佛从来没有与普朗克有过任何瓜葛。

普朗克大松了一口气。他后来回忆道:“那是一个绝望之举……我知道这是一个基础性问题,我也知道答案。但我必须不惜一切代价找出一个理论解释,只是不能违反热力学的第一、第二定律。”

他没想到,远在瑞士的伯尔尼,一个专利局小职员却很快看穿了他这个马虎眼,并从中看出了实现更革命性的突破之契机。


(待续)

Sunday, June 21, 2020

量子纠缠背后的故事(之一):无所畏惧的爱因斯坦

1901年5月,22岁的爱因斯坦(Albert Einstein)与他的大学同学、恋人玛丽奇(Mileva Maric)相约,到意大利和瑞士边境阿尔卑斯山中的休假胜地科莫湖度过几天难忘的浪漫时光。

不久,爱因斯坦收到玛丽奇来信,她怀孕了。

他立即回信表达了自己的喜悦。不过,他的心情却另有缘由:“我刚刚读到了莱纳德的一篇用紫外光照射产生阴极射线的非常棒的论文。受这篇漂亮文章影响,我欣喜若狂,一定要与你分享。”

在分享了他所认为的作为物理知音更为重要的好消息之后,他才转笔到他们俩的私事:“亲爱的,你感觉怎样?那男孩好吗?你可以想象我们将来在一起,不受任何干扰,也没有人来对我们发号施令,该会多好?”

其实,爱因斯坦当时的处境相当糟糕。他大学毕业已经一年了,还没能找到工作,只是靠在中学任临时代课老师和课外辅导挣点小钱。玛丽奇的来信让他更迫切地感受到生活的压力。他许诺会加倍努力地去找一份正式工作,即使他不得不屈尊去卖保险。而一旦他有了足以养家的收入,就会立即向玛丽奇求婚,承担起丈夫、父亲的责任。

玛丽奇的状况更为残酷。大学时,她是班上唯一的女生,志高气傲,一心要在物理学这个男人的领地中闯出一条生路。然而,事与愿违,她在毕业考试中栽了跟斗,是唯一的落榜者。她计划复习一年重考,挽救自己的梦想。意外的怀孕显然来得很不是时候。此外,她还不得不面对爱因斯坦母亲对他们关系的极力反对。

世界刚刚进入20世纪。在欧洲,未婚先孕、私生子属于大丑闻,甚至会影响到爱因斯坦谋求公职的机会。玛丽奇在怀孕期间只好孤独地隐居在旅馆里。后来她自己回老家,在父母的庇护下悄悄地完成了分娩。

爱因斯坦曾一厢情愿地想象玛丽奇所怀的会是个男孩,后来才知道是个女儿。他们为她取名为莉瑟(Lieserl)。孩子出生两年后,这个名字,连同他们有过一个女儿的任何蛛丝马迹便在他们的所有通信、文件中消失,在其后的几十年中完全不为人所知。直到1986年,爱因斯坦逝世(玛丽奇去世更早)30多年后,玛丽奇生前保存的他们早期情书被发现,这桩隐秘才进入公众视野。那时已经无法找到任何有关莉瑟的档案记录。历史学家做了大量调查后对莉瑟的下落有诸多猜测,最可能的是她出生后便被送给亲友领养,不久因病夭折。


虽然爱因斯坦在私信里对这个从没见过面的女儿满腔热忱,但在实际行动上并没有太上心。玛丽奇怀孕期间,他甚少去看望,任她在旅馆里独居。他更没有陪同玛丽奇回家或在分娩时去共享喜悦。玛丽奇回来后,他又违约没有花时间帮助她复习。玛丽奇重考后再度失败,没能获得大学毕业证书,不得不放弃了她从事科学事业的理想。

那时,爱因斯坦心目中有更重要的事情,其中就包括他读到的那篇比玛丽奇怀孕更能让他欣喜若狂的论文。

莱纳德(Philipp Lenard)是匈牙利的年轻物理学家,曾经在赫兹(Heinrich Hertz)指导下研究电磁波,尤其是紫外线的传播。1887年,20岁的赫兹率先发现电磁波的无线传播,证实了麦克斯韦(James Clerk Maxwell)20多年前提出的电磁学理论。在这个过程中,他还意外地发现当某些电磁波——尤其是高频率的紫外线——照射到金属表面时,会导致金属中发射出与阴极射线管(cathode ray tube,20世纪电视机、计算机终端、示波器等显像装置的关键器件)中类似的射线。

阴极射线管及其产生的神秘射线是19世纪末热门的物理问题之一。1897年,英国的汤姆森爵士(Sir Joseph John Thomson)确认那射线由非常微小的带负电的粒子组成,亦即“电子”。在那个时代,化学家已经有了“原子”、“分子”等作为物质基本组成的概念。物理学家则对原子的存在、性质还存有相当的疑惑。汤姆森爵士发现电子比原子还要小1000多倍,应该是原子的组成部分。这一发现令人震惊,象征着人类认识基本粒子微观世界的开端。

赫兹没能看到那一天。他在1894年元旦因病去世,年仅36岁。他所发现的紫外线导致金属中电子外溢的现象被称作“光电效应”(photoelectric effect,也就是今天太阳能电池的原理)。萊纳德继承导师的衣钵,继续研究这一现象。他对仪器、设计进行关键性的改进,做了大量系统测量,很快发现一些令人不解的性质。

光电效应本身其实很容易理解。虽然那时的物理学家对物质的微观结构还只有非常肤浅的认识。但金属既然能够导电,可以想象其中会有电子在运动。阴极射线管便是通过加热等手段让作为阴极的金属中一些电子获得足够的动能逃出,形成射线。电磁波也携带有能量。当它照射到金属表面时,也可以想象到其中一些电子会因为电磁波作用而振荡,获得足够的动能而溢出。

然而,当萊纳德将越来越强的光照射到金属表面时,他没能看到逃出电子的速度随之加快。在麦克斯韦的电磁理论中,电磁波携带的能量由其强度决定。光强比较大的光照在金属表面上,“打下”的电子也会相应地获得更大的动能,因此速度应该会更快一些。但萊纳德发现,无论光强增加到多大,出来的电子速度都很一致,只是被打出的电子的数目会随着光强增加。

相反地,他还可以把光强降到非常微弱,不再具备打下电子所需要的能量。但即使在那样的弱光下,他依然能够测量到逃逸的电子,只是数目上寥寥无几。

更奇怪的是,当相当弱的紫外光能引发光电效应时,他用其它频率的可见光却又会一无所获,即使把那些光的强度加得非常之大。

在麦克斯韦的理论中,电磁波是与日常生活中的水波、声波相似的波动。频率——或波长——是波动的一个重要特征,可以决定波被吸收的过程。比如我们的眼睛只能看到可见光,看不见红外线、紫外线等电磁波。同样,我们的耳朵只能听到一定频率范围的声音,而对超声波、次声波等没有反应。这是因为我们的眼睛、耳朵的构造决定了它们只对一定频率范围的波发生共振,而对其它频率视而不见、听而不觉。

金属中的电子可以与任何频率的电磁波发生共振,因此不具备眼睛、耳朵那样的选择性。萊纳德却发现,每种金属都有着一个特定的频率。如果入射光的频率低于这个频率,无论光强多高也不会有光电效应发生。而任何高于这个频率的光照射,即使光强非常弱也能看到电子出现。

这些奇怪的表现与麦克斯韦的电磁理论不相容,无法解释。而这正是让年轻的爱因斯坦欣喜若狂之所在。那时,他正在潜心研究普朗克(Max Planck)提出不久的一个新理论。爱因斯坦已经看出,普朗克的理论与麦克斯韦电磁理论大相径庭。他预感到麦克斯韦这个经典理论还应该会遭遇更多的挑战,而萊纳德的论文正是一个新的佐证。虽然他还远远未能理清这其中的脉络,却已经足以兴奋莫名。因此他急于与女朋友分享,竟将他们未婚先孕的大事放到了第二位。


然而,生活的变故还是让爱因斯坦意识到自己的责任。他没有食言,立即加快了找工作的步伐。在向欧洲几乎所有物理学家投寄求职信而得不到回音之后,他转向更为“实际”的途径。他在大学中的同学、最好的朋友格罗斯曼(Marcel Grossman)的父亲在瑞士开工厂,与伯尔尼的专利局局长是好朋友。爱因斯坦便一直催促格罗斯曼协助走他父亲的后门,帮他在专利局谋取一个职位。几个月后,专利局终于发出一份招工广告,其中对雇员的要求明显是为爱因斯坦量身定制。

1902年1月,就在玛丽奇在老家分娩之际,爱因斯坦在专利局工作尚未落实时便急匆匆地搬家到伯尔尼,开始他的新生活。他在那里又等了半年才被聘任为“三级技术专家”——专利局中最低级别的入门岗位。但对于爱因斯坦来说,这已经足够好了:它不仅是一个有保障的公务员职务,而且其微薄的薪金其实比他梦寐以求的大学助教位置还略高一些。况且,这好歹还是一个技术性的体面工作,比被迫去卖保险简直不可同日而语。

那年年底,爱因斯坦父亲因病去世,临终前终于首肯了他与玛丽奇的婚事。1903年1月,爱因斯坦与玛丽奇在他们所谓“奥林匹亚科学院”好友面前举行了一个简单的婚礼,双方都没有亲属出席。一年多以后,他们有了第一个儿子,开始了他们清贫但温馨的小家庭生活。

1903年1月,新婚的玛丽奇(左)和爱因斯坦。

还要再过一年,1905年3月,爱因斯坦才正式寄出他已经思考、斟酌四年之久、关于萊纳德光电效应解释的论文,在那年6月9日的《物理年鉴》上发表。

随后几个月,他又连续发表了有关“布朗运动(Brownian motion)”、“狭义相对论(special relativity)”、“质量能量等价(mass–energy equivalence)”三篇论文,完成他的第一个“奇迹年(Annus Mirabilis)”。这四篇出自专利局低级职员之手、几乎都带有划时代突破意义的论文将奠定他在科学史中的地位。

然而,爱因斯坦的境遇并没有立刻得以改变。他在学术界谋求教职的努力依然频频碰壁,还将在专利局继续蹉跎三年。


爱因斯坦出生于德国西南部,以前是施瓦本公国。那里的人以口音很重、语言难懂著名,不怎么被其它地区的德国人看重。在他与玛丽奇的情书中,爱因斯坦经常自称为“英勇的施瓦本人(Valiant Swabian)”。那是浪漫诗人乌兰德(Ludwig Uhland)在诗里塑造的一个中世纪骑士形象。他激情地写道:“但是英勇的施瓦本人无所畏惧(“But the valiant Swabian is not afraid.”)”。

爱因斯坦之所以大学毕业后走投无路,相当程度上也是他作为施瓦本人的倔犟和固执所致。在爱因斯坦进入大学的19世纪末,物理学正进入登峰造极的境界。麦克斯韦通过一组漂亮的数学方程统一了电和磁相互作用,揭示了电磁波的存在并指出我们日常熟悉的光便只是特定频率范围内的一种电磁波。这是物理学自牛顿(Isaac Newton)以来最辉煌的成就。同时,麦克斯韦、玻尔兹曼(Ludwig Boltzmann)等人又创立了统计力学,为热力学提供了坚实的数学基础。

从大学三年级开始,爱因斯坦已经开始自己接触这些物理学前沿。但他发现课堂中的讲义对这些激动人心的进展只字不提,只是重复过去的经典。于是,他经常旷课,自己到咖啡馆阅读麦克斯韦、玻尔兹曼等人的书籍论文,只是在考试时依靠恶补格罗斯曼详尽的课堂笔记蒙混过关。他的行为和态度得罪了教过他课的所有物理、数学教授。他们不仅不可能在他毕业时雇他做助手,更不愿意为他这个不会在学术界有任何前途的“懒狗”(后来帮助爱因斯坦完善狭义相对论四维时空理论的数学教授闵可夫斯基(Hermann Minkowski)对学生时代爱因斯坦的评价)提供职业推荐。

在遭遇这番挫折之际,爱因斯坦没有灰心丧气。或为自嘲或为激励,他频繁以英勇的施瓦本人形象自居,要与玛丽奇一起独自向整个欧洲物理学界挑战。在得到专利局的稳定工作之后,他每天八小时、每星期六天上班。另外每天还花一小时做家教,挣点钱贴补家用。其余时间除了与他“奥林匹亚科学院”同僚海阔天空,便都用在钻研物理问题上。

奇迹年过去一年之后,依然在专利局安居乐业的爱因斯坦给他“奥林匹亚科学院”朋友写信,回顾他那一年的那四篇论文。他依然很是兴奋、自豪,但刻意强调其中的第一篇——光电效应论文——才确实具有“非常革命性”(“very revolutionary”)。他那时当然不可能料到十多年后正是那篇论文会为他带来诺贝尔奖。但不仅是那个时候还是直到今天,更为人所知的是他那第三、四篇论文,分别开创狭义相对论、揭示质量与能量的等价和转化关系。如同牛顿力学、麦克斯韦电磁学,相对论成为爱因斯坦物理成就的代名词。

虽然爱因斯坦当时便认定他的光电效应论文比相对论更具革命性,他自己也没能完全领会其深远意义。在那篇论文中,他石破天惊地提出光并不是麦克斯韦方程中所描述的电磁波,而是由微小、分立的“光量子(light quantum)”组成。唯有如此,才能理解普朗克的新理论,才能简单、完美地解释萊纳德发现的那些与麦克斯韦理论不符的现象。然而,光量子是什么、遵从什么样的物理定律,他也还没有切实的概念。

果然,他的论文很快遭到最先引入“量子(quantum)”概念的普朗克的强烈反对。在那之后几十年中,他不仅面对老一代物理学家的诘问,还会与同辈的玻尔(Niels Bohr)展开漫长的争辩,并领受新生一代物理学家的责难。当然那时候的爱因斯坦的身名、地位都早已不可与在专利局时的他同日而语,他仍然发现自己几乎总是一个人孤独而固执地挑战一个又一个既定或正在确立的物理体制。

伴随着这一过程,人类进入了量子力学新时代。

26岁的爱因斯坦无法预知这一切。但即使他明知前路坎坷,也不会犹豫彷徨。因为英勇的施瓦本人无所畏惧。


(待续)