Monday, May 27, 2019

宇宙膨胀背后的故事(十一):爱因斯坦错在哪里?

1930年1月10日,英国王家天文学会的例会讨论了哈勃的新发现。正在伦敦访问的德西特应邀介绍了最新进展,他坦白地承认自己的宇宙模型中虽然存在红移,却无法解释这个与距离成正比的规律。爱丁顿觉得当时理论界的情形颇为滑稽:“爱因斯坦的宇宙中有物质没运动,德西特的却有运动而没物质。”(“Einstein's universe contains matter but no motion and de Sitter's contains motion but no matter.”)

那时候勒梅特已经证明了德西特的模型并不真的是一个静止的宇宙。因为坐标系的问题,在那个宇宙中任何地点放一个有质量的物体,该物体都会加速向边缘飞去。那便是模型中红移的来源,并非物理实际。因此,爱丁顿以双关语讥讽德西特道:你那模型“没有物质,所以无关紧要”(“as there isn't any matter in it that does not matter.”)

难道就不能有一个既有质量又有运动(红移)的宇宙模型吗?爱丁顿近乎绝望地问道。

那次会议的记录照例发表在学会的通讯上,几个月后传到比利时的勒梅特手中。勒梅特看到后哭笑不得,当即写信给爱丁顿,提醒前导师他在三年前就已经寄送过一篇论文。那篇论文提出的宇宙模型正是既有物质又有运动,并完美地推导出星云的速度距离关系——比哈勃的发现还早了两年!

爱丁顿收到信大为震惊,立刻翻阅故纸堆,找出了那篇论文。不知道当初是没注意还是没看懂,他对那论文毫无印象。出于歉疚,爱丁顿此后花大功夫补救他的疏忽,宣传他昔日弟子的成就。

出于爱丁顿的安排,勒梅特1927年那篇法语论文的英文版于1931年3月在王家天文学会月刊上重新发表。这个三年后的版本虽然大致保持了原貌,也有一些改动。勒梅特补充引用了他原来不知道的弗里德曼论文,老老实实地指出他的理论是弗里德曼的进一步推广。但更突出的是,他省略了关于观测数据中星云的速度与距离成正比关系的整个一节。实诚的勒梅特觉得哈勃这时已经发表了更新、更可靠的数据,没有必要再重炒旧饭。

众多的天文学家只是通过这个英文版才接触到勒梅特的理论。他们不知道有这个删节,因此依旧理所当然地认为哈勃是发现该关系——“哈勃定律”——的第一人。(后期历史学家曾猜测哈勃在翻译过程中插过手以维护他的优先权。这说法并不成立。迟至2018年10月底,国际天文学会全体会员投票,建议将“哈勃定律”正式改名为“哈勃-勒梅特定律”。)

但勒梅特迟到的论文还是有它深刻的影响。作为观测天文学家,哈勃只是从数据中总结了红移的规律。他没有也无力做出进一步的解释。勒梅特正相反,他的规律是从广义相对论中直接推导出来的(然后才找到实际观测数据证实),对数据有一个革命性的诠释:我们看到星云巨大的红移,不是来自星云本身的速度,而是宇宙空间的膨胀。星云只是被动地由所处的空间带着走,就像流动着水面上的浮漂,或者膨胀气球表面上画着的斑点。

即使是熟谙相对论的物理学家一时也无法接受如此怪异的观念。在洛杉矶,到哈勃的家里来的不再只是好莱坞的明星。每两星期,一群从威尔逊山和附近加州理工学院来的天文学家、物理学家甚至数学家也会定期聚集,围着一块小黑板抽烟、争论,嘟囔着很多格蕾丝不懂的名词术语。作为主妇,她默默地为他们准备好酒品、饮料和三明治。

这些人中有的认为星云是在不变的空间中做随机运动,只是碰巧速度大的星云现在已经跑得离我们很远,才让我们有越远的星云速度越快的错觉;有人则觉得远方的星光来到我们地球的一路上大概经历了更多的散射干扰、逐渐失去能量才表现出红移……

哈勃静静地听着。他无法加入这类理论性的探讨,只是集中注意力试图听到某种可以通过观测数据来确证某个理论是否正确的可能性——那才会是他的用武之地。在内心里,他也无法理解勒梅特的空间膨胀理论。终其一生,他一直倾向于相信他看到的是星云本身——而不是空间——的运动。


1930年11月,爱因斯坦与他的第二任妻子、表姐加堂姐(再从姐)艾尔莎(Elsa Einstein)及秘书、助手一行四人乘坐一艘由一战时的战舰改装的豪华邮轮渡过大西洋来到美国。这是他第二次访问美国。但这次他们只在纽约稍事停留,便继续乘船南下,循通航仅十来年的巴拿马运河进入太平洋,然后又顺海岸北上,于那年12月31日到达圣地亚哥。在长达四小时的盛大欢迎仪式后,爱因斯坦第一次踏足美国西海岸。

他是应加州理工学院的邀请来这里进行为期两个月的学术访问。除了阳光、海滩,这里有他慕名的物理学家迈克尔逊和密里根。自然,他也对邻近威尔逊山上正在颠覆他的宇宙论的哈勃满怀好奇。
1931年,爱因斯坦(右三)参观威尔逊山天文台图书馆。左一、左二分别为胡马森和哈勃;左四是迈克尔逊。

爱因斯坦当时也才51岁,有了为人熟悉的那一头飘逸的乱发,只是还没有完全变白。但他已经是世界上首屈一指的物理学家、科学家,大众媒体追逐的明星。他观看了当地的新年玫瑰游行,欣赏了在德国被禁的反战电影《西线无战事》(All Quiet on the Western Front),还出席了卓别林《城市之光》(City Lights)的首映式。当他们穿着正式的燕尾礼服,在观众掌声中一起步入影院时,卓别林感慨道,“他们欢呼我是因为他们明白我;他们欢呼你,却是因为没有人能懂你。”

哈勃的夫人格蕾丝义不容辞地担任起接待爱因斯坦的职责。一次她开车带爱因斯坦出门时,爱因斯坦专门对她夸道,“你丈夫的工作非常漂亮,他很能干。”

1931年1月29日,爱因斯坦与哈勃一起乘车登上威尔逊山。好莱坞的新生代导演卡普拉(Frank Capra)亲自掌镜,为他们全程拍摄纪录片。在山上,爱因斯坦像孩子一般对各个庞大的望远镜爱不释手、流连忘返。他们最后才来到胡克望远镜跟前。当工作人员无比自豪地介绍这个大家伙如何能发现宇宙的大小和状态时,倒是艾尔莎淡定地评论:我丈夫只需要一张旧信封的背面就够了。
1931年,爱因斯坦(左)在威尔逊天文台观赏胡克望远镜。哈勃(中)和天文台台长亚当斯(Walter Adams)陪同。

几天后,爱因斯坦又在洛杉矶为当地的天文学家、物理学家举办了一个学术讲座。他开门见山地承认,基于哈勃等人的发现,宇宙大小不恒定,的确是在膨胀。他解释说,14年前他在广义相对论场方程中引进了那个“宇宙常数”项只有一个目的,就是要找一个恒定不变的宇宙解。现在看来是画蛇添足,完全没有必要。

于是,哈勃在媒体上又获得一个桂冠:“让爱因斯坦改变了主意的人”。


几乎所有科学历史的书籍、文章都会提到爱因斯坦曾抱怨引入宇宙常数是他“一辈子最大的失误”(biggest blunder of his life)。不少作者更一厢情愿地设想如果爱因斯坦当初没有仓促行事,而是更相信他自己的方程并预测宇宙膨胀,该会是多么地辉煌。

这两个说法都没有证据支持。

前一个说法来自宇宙学家、科普作家伽莫夫(George Gamow)的描述,没有任何旁证。天体物理学家、作家利维奥(Mario Livio)为这个“最大的失误”来源做了细致的调查和分析,可以肯定那是伽莫夫出于戏剧性的凭空编造。

爱因斯坦在他那篇1917年原始论文中便明确说明宇宙常数项只是为得到一个静止的宇宙而引入,其前提是广义相对论场方程允许这样一个项的存在,因此有可能是真实的。他的确一直为此惴惴不安,只是因为这个项没有在场方程中自然出现,需要人为引入,破坏了他所追求的美学意义上的简单性。当静止宇宙这个要求不再必要时,爱因斯坦轻易地就舍弃了这个多此一举,也并没有觉得当初的引入曾是多大的失误。

的确,爱因斯坦之所以引进宇宙常数项,并不是为了遏止或防止宇宙膨胀,而是恰恰相反。他看到的是他那个宇宙模型会在引力影响下塌缩,因此需要一个平衡因素。那是一个从牛顿开始就已经意识到的老问题,与后来勒梅特发现的宇宙膨胀没有关系。即使爱因斯坦对他自己的理论充满信心,他最多只会无奈地指出他的广义相对论宇宙与牛顿力学的宇宙一样最后会塌缩到一个点。

因此,即使是在弗里德曼发现爱因斯坦的方程中包含宇宙大小可以随时间有不同的变化方式——既可以塌缩也可以膨胀——时,爱因斯坦也没有“恍然大悟”。他先验地认定弗里德曼的推导出了错,被纠正后依旧不以为然,觉得弗里德曼的解“不具备物理意义”。

及至勒梅特给出更详细的数学理论,并辅以实际观测的光谱数据来证明宇宙的膨胀时,爱因斯坦依然只是学霸式地将之贬为“物理直觉糟糕透顶”。

其实,在这个问题上物理直觉糟糕的恰恰是爱因斯坦自己。


宇宙在大尺度上是恒定、静止的,是人类千年的直观经验。在确凿的光谱红移数据出现之前,以此作为宇宙理论的前提几乎是理所当然。然而,爱因斯坦的错误却并不止于此。

爱因斯坦引入的宇宙常数项是为了抵消引力作用、避免塌缩。因此,这个常数的数值必须非常合适。数值如果太小,不足以抵挡引力,宇宙还是会塌缩;如果太大,则会超越引力,宇宙就会膨胀。爱因斯坦仅仅在数学上确定可以有一个恰恰合适的数值存在,便大功告成地宣布发现了他的(静止)宇宙模型。

理论物理学家温伯格(Steven Weinberg)在他著名的《最初三分钟》科普书中给出一个形象的比喻:如果我们在地球上发射火箭,火箭或者有足够的能量逃离地球,或者最终耗尽燃料被地球引力拉回来坠毁。爱因斯坦式的静态宇宙正好介于逃离(膨胀)和落回(塌缩)之间,无异于是一个停留在半空中正好不上不下的火箭。那火箭的推力必须百分之百地恰到好处。

那么,有没有可能我们这个宇宙恰恰有一个如此准确的宇宙常数值,不偏不倚地抵消引力的作用呢?这不是完全没有可能——毕竟我们并不知道宇宙是怎么来的,也许我们的运气异常地好。然而,这样的平衡还必须是百分之百地准确。因为只要有极其微弱的偏差,宇宙都会或者膨胀或者塌缩,不会保持着静止状态。

也就是说,在数学上我们可以找出一个将鸡蛋平衡在一根针的针尖上静止不动的解。但这属于不稳定的解。因为我们知道,只要稍有偏差,鸡蛋就会倒下。这种解不可能在现实世界中出现。

爱丁顿是在仔细研读被他忽视过的勒梅特论文时才意识到这一点。勒梅特也已经证明了(但没有明确表述出来)爱因斯坦所给出的静止宇宙解正是这么一个不稳定的解——“不具备物理意义”。


加州理工学院竭尽全力,邀请爱因斯坦每年冬天前来学术访问。爱因斯坦显然也喜欢这里的阳光海滩。一年之后,爱因斯坦再次来到南加州。这一次,德西特也来了。在此之前,曾经对勒梅特不屑一顾的德西特研读了勒梅特的论文后也几乎立刻就转变了态度,大赞勒梅特的理论“高妙”。
爱因斯坦(左)与德西特在加州理工学院讨论他们的宇宙模型。

他们俩一番切磋后,合写了一篇仅2页长的论文,发表在美国科学院院刊上。这篇论文没有什么新思想,不过重复了弗里德曼、勒梅特和其他理论物理学家的最新进展。如果换上别的作者,估计不可能通过同行评议。但正是因为作者是爱因斯坦和德西特——宇宙模型的两位开山鼻祖——这篇论文才有了特殊的意义:它标志着两人都正式地放弃了各自的宇宙模型,认同了弗里德曼和勒梅特的宇宙。

这篇论文发表后不久,爱因斯坦去伦敦拜访了爱丁顿。爱丁顿好奇地问爱因斯坦为什么还要发表那么一篇论文,爱因斯坦答曰,我的确并不觉得有多么重要,但德西特很把它当一回事。爱因斯坦走后,爱丁顿收到德西特的一封来信。信中说,你肯定看到了我与爱因斯坦的论文。我不觉得那里面的结果有什么重要性,但爱因斯坦似乎觉得很重要。

两位泰斗“投降”后,广义相对论的宇宙模型逐渐在更多的理论学家的参与和发展下定型,成为所谓的“弗里德曼-勒梅特-罗伯森-沃尔克度规”(Friedmann–Lemaitre–Robertson–Walker metric)。(没错,这里的罗伯森就是那个几年后不动声色地帮助爱因斯坦改正了他在引力波推导中错误的那个罗伯森。)

颇为讽刺的是,因为1932年那篇论文,这个新模型也经常被称为“爱因斯坦-德西特宇宙”。


(待续)



Wednesday, May 15, 2019

宇宙膨胀背后的故事(之十):哈勃的“新”发现

冷不丁被哈勃的一封信颠覆了宇宙观的沙普利没有再纠缠两人以往的过节,很快全盘接受了哈勃有坚实数据支持的新世界。作为哈佛天文台台长,沙普利不再有在前沿观测、科研的机会或实力,已经在蜕化为端坐在他那张特制办公桌后面的行政人员。阅读八角桌上越来越多的论文和报告,他意识到天文名词需要正本清源,明确那几个历史悠久、一直都在被当作同义词而混用着的基本概念:“银河”(Milky Way)、“星系”(galaxy)、“宇宙”(universe)。

他提议以“银河”专指我们所在的“星系”,银河只是“宇宙”中无数的星系之一。在银河之外,我们看到的每一个星云都是一个或多个与银河类似的星系。所有的星系的整体是我们的“宇宙”。这样,“宇宙”再度恢复了原有的意义:独一无二、包罗万象的宇宙。

那个自康德开始的“岛屿宇宙”概念则应该被摒弃——星云不是个体的宇宙,只是宇宙中的星系。比如,“仙女星云”(Andromeda Nebula)应重新命名为“仙女星系”(Andromeda Galaxy)。

哈勃却依然不愿意附和沙普利。他固执地坚持“星系”这个词的本源含义——在古希腊它与“银河”同样来自“奶”的神话,故只能是银河的同义词。终其一生,他顽固地把银河外的星云别扭地称之为“星系外星云”(extragalactic nebulae)。(勒梅特1927年的那篇论文也采用了这个称呼。)

直到哈勃逝世之后,天文界才一致性地采纳了沙普利的提议,成为我们今天的标准语言。


1914年斯里弗在西北大学会议上报告星云光谱时,刚开始研究生学业不久的哈勃也在听众席中。哈勃在那次会议上被选为美国天文学会会员,并很可能就是因为斯里弗的演讲而与星云结下终身之缘。在他参军上战场前匆匆而就的那篇“暗淡星云”毕业论文中,他颇遗憾地表示,要看清楚星云,必须有比他当时所用的更强大的望远镜。

十年后,如愿以偿地在威尔逊山用最强大的胡克望远镜找到仙女星云中的造父变星、给沙普利寄出那封信之后,哈勃倒忙里偷闲地结婚度蜜月去了。
1924年,新婚的哈勃和他的妻子格蕾丝。

他的新娘格蕾丝(Grace Hubble)是洛杉矶银行家女儿,为他带来一笔不小的财富。哈勃九泉之下的老父亲终于可以瞑目,不用再担心陷于追星梦的儿子无法养家糊口。只是婚礼上没有出现哈勃的亲人。搬到西海岸后,他与中西部乡下的家庭切断了联系。在其后与哈勃30年的共同生活中,格蕾丝从来都没有见过他的任何家人。

威尔逊山下的好莱坞电影城这时进入第一个黄金时代。身材高大仪表堂堂衣着考究一幅英国绅士派头的哈勃如鱼得水。格蕾丝尤其善于社交,他们的爱巢很快成为热门的聚会场所。包括卓别林(Charlie Chaplin)等的一流影星,以及剧作家、导演,都是家中常客。这个圈子里的人觉得哈勃作为科学家实在是浪费人才。他们赞誉他为希腊美神阿多尼斯(Adonis),比当红男星盖博(Clark Gable)有过之而无不及。

在这个娱乐小圈子之外,哈勃的名声也正如日方生。罗素在1925年元旦宣读他的论文之后,媒体以各种耸人听闻的标题、哗众取宠的笔调渲染他所发现的“千万个的宇宙”、“天堂的新奇景”……(当然,他的论文也正如罗素预测,赢得了美国天文学会的年度大奖。)哈勃这个名字开始变得家喻户晓。

在威尔逊山上,哈勃少校却依然因为他的做派而形单影只。在外的名声只是让他与其他同事的矛盾愈加尖锐。在山上,最有人缘的是另一个性格、为人等各方面都与哈勃截然相反的职员。


胡马森(Milton Humason)在学历显赫的天文学群体中是一个绝无仅有的异类。他也是出生于中西部的乡下,但幼年时并没有哪个长辈送过他天文望远镜。他父亲教给他的是钓鱼、打猎等户外生活的技能和乐趣。他还年少时随家庭搬到洛杉矶,很快就与这里更好的学习环境格格不入。好在每年夏天,刚刚十来岁的胡马森可以参加在威尔逊山上的夏令营。那时候还没有天文台。在荒山上他钓鱼、射击、攀爬,尽情地享受自然,乐不思蜀。终于,在高中第一年时,他说服父母准许他退学,跑到山上的一个小旅馆当小伙计,过起自食其力、自由自在的日子。

海尔也正是在那期间选中了威尔逊山修建天文台,开始了艰苦的基建工程。少年的胡马森看着那些在山路上频繁运送物资的骡马队很眼馋,也看到了机会,便跟人学会了这一技能,成为驾驭骡马的高手。两年后,当天文台冒险搬运1.5米口径望远镜上山时,正是17岁的胡马森率领骡马队协助载重卡车一步一步地挪过山上崎岖、狭窄的惊险小道。
1910年,不到20岁的胡马森在威尔逊山上。

几年下来,他天真活泼、自来熟的个性让他成为山上山下所有人的朋友。

只是好景不长,他与天文台首席工程师的女儿坠入了情网。为了赢得未来丈人的首肯,胡马森不得不结束在山上的无忧无虑,到洛杉矶市郊管理起家族的农场果园——有前途的体面工作。又不到几年,小两口不仅有了下一代,还存下钱置买了自己的农场,成为当地殷实富足的成功人士。

偏偏老丈人又随口透露山上已初具规模的天文台要雇佣一个清洁工,再度勾起胡马森的浪漫情怀。他们匪夷所思地变卖了农场,搬进山上小木屋,成为天文台的最低端人口。胡马森担负着洗刷天文学家夜以继日冲洗底片的各种化学试剂、清扫垃圾等重任,还要在风暴后清障铲雪,保证山上小道的畅通。闲暇之余,他与四岁的儿子在山溪中钓鱼、林间漫步野餐打雪仗,其乐融融。

他乐此不疲,主要还是因为这份工作带有一项“福利”:晚上可以自愿去给天文学家打下手。从跑上跑下递送物件到按照指定的坐标预备望远镜的朝向、置换观测箱、更换底片,以及在观测人员休息的间隙代替监控望远镜……他就这样一点点地学会了天文观测的基本技能。对他来说,这并不比少年时学会驾驭骡马难多少。

他的勤勉和热心赢得了天文台中每一个人的喜爱和信任。他还曾冒着生命危险独自追踪、猎杀了一只在附近惹是生非的山狮,更令他声名大噪。沙普利称他为不可多得的“文艺复兴式人物”(Renaissance man)。慧眼识珠的天文学家私下指导、培训他进行独立的天文观测,并与他共同署名发表论文。

1919年,年方28岁的胡马森被海尔破格聘任为正式的天文职员,完成了从骡马手、清洁工到科学家的飞跃。在现代天文台中,这很可能是前无古人后无来者:胡马森一直连高中学历都不具备。(1950年胡马森快退休时,瑞典的隆德大学因他对天文学的贡献授予他荣誉博士学位。那时他已经发表近100篇科学论文,也是英国王家天文学会会员。)

不过,即使是对他极为欣赏的沙普利也有看走眼的时候。在为沙普利当助手时,胡马森注意到沙普利拍摄的星云照片上有个别亮度的变化,曾特意标出提醒沙普利注意。当时还深陷在“大银河”思维中的沙普利很不以为然,训导了胡马森一番造父变星如何不可能在星云中出现的大道理后便顺手擦掉了他做的记号。几年后,胡马森看到哈勃正是通过与那几张照片的比较而发现了仙女星云中的造父变星,一举成名。(阴错阳差,细致的胡马森后来也曾错过一次在自己的照片中发现冥王星的良机。)


哈勃其实只比胡马森大不到2年。拥有博士学位、留过洋的哈勃开始没有怎么注意过这个没有学历的小职员。等到几年后哈勃意识到他需要胡马森的帮助时,胡马森已经与他人合作发表了多篇论文,并在观测、拍摄暗淡的星云上有了自己的建树。

1928年夏天,哈勃已经是国际天文联合会中的星云委员会代理主席。他参加了在荷兰举行的年会,见到了著名的理论天文学家德西特。德西特因为自己的宇宙模型力促哈勃关注星云的光谱红移,唤起了哈勃当年听取的斯里弗报告时的感觉。斯里弗那时已经成功测出了40多个星云的光谱,也抵达了他在洛威尔天文台的设备极限。要再提供柯蒂斯期望的“更多的数据”,非威尔逊山的胡克望远镜莫属。

回国后,哈勃决定集中精力研究光谱。胡马森的专注、仔细和耐心正是长时间追踪捕捉遥远星云那微弱的光亮所不可或缺的天赋。于是他难得地放下架子,向胡马森提议合作。胡马森可以承担那夜以继夜地连续曝光拍摄遥远暗淡的星云光谱的苦差事,让哈勃可以有更多的时间寻找这些星云中的造父变星以估算距离、并寻求它们之间的联系。胡马森虽然并不十分情愿,却也无力拒绝。

星云之所以称之为星云,就是因为它们的光亮过于微弱无法看清它们的本像。罗斯伯爵用利维坦看到它们的涡旋形状,哈勃用胡克望远镜终于发现了其中的造父变星。但这些还只是看距离比较近的星云。当哈勃把视线转向更为模糊的遥远星云时,他发现即使是威力强大的胡克望远镜也无能为力。更远的星云中无法辨认个体星星,更遑论造父变星。

当然他也不是束手无策。在勒维特的尺子不好用之后,哈勃可以采用其它方法:假设每个星云中最亮的星的内在亮度会差不多,他利用已知距离的星云中最亮的星的视觉亮度与未知距离的星云中最亮的星相比,可以大致估算出距离上的差别。再往远处的星云完全辨认不出个体星星,他又假设星云整体的平均亮度可能也差不多,用已知距离星云的平均亮度与未知距离的星云相比,估计更远的距离。

这个没有办法的办法不是哈勃的发明,沙普利在研究星团的距离——他的大银河宇宙的大小——时,也采用过相似的手法。在天文学上这叫做“宇宙距离阶梯”(cosmic distance ladder):在一种测量方法不再适用时,用它所测得的最远距离做基准转换到另一种可能适用的方法。哈勃所用的从视差到造父变星到最亮的恒星到平均亮度只是这个阶梯的一种,天文学中还有其它可用作距离阶梯的测量手段可以综合、对比使用。


1929年3月,《美国科学院院刊》同时发表了两篇来自威尔逊山的论文。其一是哈勃的《星系外星云距离与径向速度之间的关系》(A Relation between Distance and Radial Velocity among Extra-galactic Nebulae)。在这篇文章中,哈勃揭示了他发现的规律:星云的径向速度与它们的距离成正比,并提供了一目了然的数据图。
哈勃在1929年发表的星云速度(纵坐标)与距离(横坐标)关系图。其中实心点、实线与空心点、虚线分别代表两种不同计算方法的结果,二者相差不大。

在这篇论文中,哈勃采用的其实只是斯里弗早已测出的光谱数据(但没有在论文中交待来源),因此他的“新”发现与勒梅特两年前已经发表过的结论并无二致。但引人注目的是紧跟着的另一篇、由胡马森单独署名的论文:《NGC7619 的巨大径向速度》(The Large Radial Velocity OF NGC 7619)。胡马森的这篇论文简短得不到一页,只报道了一个数据点。在这简单文字的背后,却是一番不足以外人道的辛劳。

在答应与哈勃合作后,胡马森便潜心苦干,极力拍摄那个暗淡星云的光谱。经过一系列的屡败屡战,他终于得到一张可用的光谱照片,发现那个星云的速度高达每秒3800公里,比沙普利曾经看到的最高速度又高了两倍多。

当胡马森拿着这张底片敲开哈勃办公室的门时,一向矜持端庄的哈勃也掩饰不住兴奋,惊动了整个天文台。哈勃早已估算好这个星云的距离,胡马森的速度正是按照正比规律所预测的数值,把他那张图上的直线延长了整整两倍!

哈勃对他这个合作者还不那么放心,既没有合写论文也没有直接采纳这个重要的数据,而是在同时发表的两篇论文中互相引用说明。这样,他既能得到这个数据的支持又不需要承担万一出错的责任。

测量这一个数据点的辛劳和哈勃的心计已经让胡马森身心俱疲,发誓退出、不再继续测量星云光谱。只是形势比人强,他们这一历史性突破的意义早已远远超过个人的恩怨。威尔逊天文台不顾其他天文学家的反对,将胡克望远镜的观测时间几乎完全交给胡马森一个人使用,并专门拨款为他购买了最先进的照相机。

不久,他又成功地拍摄到更远的星云:距离约1亿光年之巨,径向速度高达每秒2万公里——光速的百分之六。连哈勃这时也深感佩服:“胡克望远镜终于在你手中物尽其用了。”("Now you are beginning to use the 100-inch the way it should be used.")
不同距离的星云(自上而下越来越远)光谱比较,可以看到被标识为“KH”的钙谱线越来越往右边(红色)移动。

当然,更重要的是,那么遥远的距离,那么巨大的速度,依然符合着速度与距离的正比关系。至此,这个关系的普适性已经毋庸置疑。

哈勃早已奠定的名声保证了他的发现不会像勒梅特的那样被忽视。在发现宇宙真正的尺度之后仅仅四年,哈勃又发现了宇宙之不可思议的运动规律。这后一个历史性的贡献立刻被命名为“哈勃定律”(Hubble's Law)。其定律中速度与距离正比关系的系数也相应地被叫做“哈勃常数”(Hubble's Constant)。


(待续)