Monday, February 25, 2019

宇宙膨胀背后的故事(之五):挑战爱因斯坦的宇宙

1916年夏天,就在发表广义相对论一年后,爱因斯坦应邀到荷兰的莱顿市访问三个星期,与老朋友洛伦兹(Henrik Lorentz)、埃伦菲斯特(Paul Ehrenfest)等切磋他的新理论。在那里,他还结识了比他大7岁的天文学家德西特(Willem de Sitter)。德西特是研修数学出身,对广义相对论倒也不怎么发怵。

第一次世界大战已经激战正酣。夹在敌对的德国和英国之间的荷兰勉力保持着中立,无意中成为科学交流的一个桥梁。德西特将爱因斯坦的论文转寄给英国同行、剑桥天文台主任爱丁顿,才有了爱丁顿几年后证实敌方科学家理论的历史佳话。

很可能也正是出于德西特的提醒,爱因斯坦意识到他的理论可以走出假想中的电梯而面向整个宇宙,才有了1917年初的“爱因斯坦宇宙”。

德西特也没有闲着。因为战争的阻碍,加之广义相对论艰涩难懂,爱丁顿请他为英国天文学会月刊撰稿,面向天文学家介绍这个新理论。于是,德西特在1916和1917两年中接连在英国发表了三篇论文,题目都是《论爱因斯坦的引力理论及其在天文学中的应用》(On Einstein's Theory of Gravitation and its Astronomical Consequences)。最后一篇发表于1917年10月。
1898年左右的荷兰天文学家德西特。

那年年初,他看到了爱因斯坦发表的宇宙模型,觉得不甚满意。作为天文学家,他最关心的是为什么会有那么多星星、星云的光谱呈现红移,似乎都在急于逃离我们的太阳系。爱因斯坦没有给出这个答案,甚至压根未置一词。德西特意识到作为理论物理学家的爱因斯坦对当时的天文学进展既不熟悉也不关心。因此,他那个“有限无边”的宇宙不但令人无法理解,也无从与现实对应。于是他决定自己试一试。

虽然爱因斯坦已经把宇宙简化成了“球形的奶牛”,德西特认为他还可以再进一步:爱因斯坦假设宇宙中的物质密度完全均匀,处处一样。德西特则觉得对整个宇宙来说,物质的密度实在很小,可以忽略不计。因此,这个质量密度完全可以再简化为零:一个空空荡荡、没有物质的世界。

和爱因斯坦一样,他也是在寻求一个不随时间而变的恒定解。经过一番探索,他还真找出了这样的一个解。或者说,至少是一个数学上可以存在的解。

虽然广义相对论是“质量告诉空间如何弯曲”,德西特这个没有质量的宇宙却也有着与爱因斯坦宇宙类似的弯曲。神奇的是,在他这个时空中,光的频率会越传播越低:离光源越远的光的波长越大。也就是说,光的传播本身是一个红移的过程。

德西特因而大喜,将这个成果作为他的第三篇论文在英国发表。他提出,天文学家观察到的星云光谱红移也许不是星云真的在运动,而只是相对论时空弯曲造成的错觉。

自然,德西特在撰写论文之前就写信给爱因斯坦通报了他的发现。爱因斯坦大惑不解,回信直言这实在莫名其妙(does not make sense to me):一个没有物质存在的宇宙应该没有任何意义。

不过,爱因斯坦也不得不纠结。他认为广义相对论是一个全面、终极性的理论,不需要再外加其它条件、参数就可以描述整个宇宙。因此,她所能给出的宇宙解应该是单一的。所以他在引进那个宇宙常数,因而找到一个随时间恒定不变的解之后便以为大功告成,没有再深究,以至于没有考虑过他的方程是否还会存在着另外的解。

德西特的宇宙模型虽然比爱因斯坦的更为怪异、费解。但他好歹把广义相对论框架下的宇宙与现实的光谱红移现象联系了起来,引起了更多天文学家的兴趣。只是当时无论是物理学家还是天文学家都一筹莫展,既无法领悟理论的精髓,也没能理解红移的来源。

而在欧洲,战争正在干扰着正常的科学研究。


尽管战争阻碍了广义相对论在科学界的交流,这个理论最早的突破性进展却出现在战场上,几乎就是战壕里。

施瓦西(Karl Schwarzschild)是一个在德国出生、长大的犹太天才儿童,16岁以前就发表了两篇关于双星轨道的科学论文。20世纪初,他在哥廷根大学任教授,是希尔伯特、闵可夫斯基(Hermann Minkowski)这些研究相对论的数学高手的同事。

当一战爆发时,施瓦西已经40出头,还是普鲁士科学院的院士。他却毅然投笔从戎加入了德国陆军。1915年爱因斯坦发表广义相对论时,他正在俄国前线指挥炮兵奋战,同时用他的数学知识设计弹道、命中率的计算和优化。

战斗间隙,他依然操起旧业,推导出广义相对论场方程的第一个解。(此前,爱因斯坦一直是采用近似方法做数值演算。)1915年12月22日,他写信给爱因斯坦汇报,不无得意地炫耀:“您看,战争对我足够好。让我在激烈的炮火下还能逃逸到您的思想领域中徜徉。”

爱因斯坦收到信不禁叹为观止,回信曰:“我从来没有想到这个问题的严格解可以表述得如此简洁。”(I would not have expected that the exact solution to the problem could be formulated so simply.)他立刻在普鲁士科学院宣读了施瓦西的论文。

施瓦西相继担任过哥廷根天文台、波茨坦天体物理天文台的台长。他的兴趣也已转往天文学,希望能通过广义相对论找到一个新的宇宙图像。不幸的是,他感染了天疱疮,不久于1916年5月11日辞世。

施瓦西不可能知道的是,在他战场对面,也有一位渴望着理解宇宙奥秘的理论物理学家。


早在1907年,埃伦菲斯特曾经因为妻子的缘故搬家到俄国,在国立圣彼得堡大学任教。他开了一个每周一次的即兴讲座,畅谈量子力学、统计物理以及相对论的最新进展。这个讲座吸引了很多年轻学生,其中有弗里德曼(Alexander Friedmann)和塔马金(Jacob Tamarkin)。

弗里德曼的父亲是作曲家、芭蕾舞星,母亲是钢琴师。他们的后代钟情的却不是音乐而是数学。弗里德曼小学时就结识了后来成为著名数学家的塔马金,结成形影不离的死党。两人高中时合写了一篇关于伯努利数(Bernoulli numbers)的论文,不知天高地厚地寄给了希尔伯特,居然被他选中在《数学年鉴》(Mathematische Annalen)上发表。

弗里德曼大学毕业后一边继续攻读硕士学位,一边在天文台上班,研究气象学。一战爆发后,他志愿投身俄国空军,驾驶轰炸机战斗在奥地利、德国前线。就在施瓦西为德军推算火炮瞄准表格时,弗里德曼也在用他的数学技能为俄军编制飞机投弹指南。与施瓦西不同的是,弗里德曼没有在沙场捐躯。

俄国退出战争后,弗里德曼又陷入红军与白军拉锯内战的险境。等到他终于辗转回家时,俄国已经变成了苏联,圣彼得堡变成了彼得格勒。为了生计,他在那里四处兼职,一边教学一边重新开始科研。
1922年左右的苏联数学家弗里德曼。

虽然爱因斯坦的狭义相对论很早便为俄国科学家所熟知,广义相对论却被战争阻挡在境外,直到战后爱丁顿的日全食实验轰动全球才被知晓。一位当初被战争隔绝在德国,结果阴错阳差地在哥廷根成为希尔伯特助手的俄国物理学家这时也回国,为弗里德曼带来了最新的进展。他便一头扎进了广义相对论的宇宙模型。

他发现,在假定宇宙不随时间变化的前提下,爱因斯坦和德西特分别发现的确实是场方程所能有的两个解,不会再有其它可能。但他更觉得这个假定本身很迂腐,并不具备“理所当然”的合理性。他主张把场方程看作纯粹的数学方程来求解,不但要看到这里面的宇宙长什么样,更可以看看它随时间如何演变。

这一来,他发现这个方程的解可以有很多很多——其实是无穷多。在这些解中,有着几种奇怪的宇宙。与爱因斯坦刚开始就发现的那样,宇宙的大小会随时间变化。

如果爱因斯坦引进的那个宇宙常数的数值与宇宙中质量密度相比足够大,宇宙会“从零开始”慢慢变大,经过一个拐点(inflection point)之后便急剧膨胀到无穷大。如果宇宙常数不够大,宇宙也会逐渐变大,但其起点却是已经有一定大小。最有意思的是——至少对弗里德曼自己来说——如果宇宙常数是零(也就是如果爱因斯坦压根没有引进过这个无中生有的项)或负数,宇宙会从零开始逐渐长大,达到一定的最大值后又会反过来逐渐收缩,直到回归为零。或者说,宇宙大小可以像弹簧似的来回振动。

后来,弗里德曼还发现这些解中宇宙的空间形状也会有不同,并不都是爱因斯坦所描述的那种“有限无边”的球。他的宇宙可以是一个球(“正曲率”),也可以是一个马鞍(“负曲率”),甚至还可以就是我们日常所熟悉的平坦欧几里德(Euclid)空间(“零曲率”)。


弗里德曼的论文陆续发表在德国的《物理学报》(Zeitschrift fur Physik)上。爱因斯坦看到第一篇后就很不以为然。他已经在为德西特的宇宙头疼,更不能容忍一下子又冒出这么多不同的宇宙来。1922年9月,他给《物理学报》投寄了一封信,质疑弗里德曼的论文,认为那只是由一个数学推导错误所导致。

信寄出后,爱因斯坦便启程赴日本讲学。正是在途径中国上海的11月13日,他得知自己因为“光电效应”荣获了1921年的诺贝尔物理学奖。

弗里德曼看到爱因斯坦的批评后也丝毫不含糊。他在12月给爱因斯坦去信,附上他详细的推导过程请爱因斯坦验证、指出具体错在哪里。“如果您发现这些计算其实是正确的,”弗里德曼不客气地要求,“那就请好心的您向《物理学报》编辑澄清,也许您应该发表一篇订正。”

爱因斯坦来年3月份回到柏林后一直没看到这封信,后来5月份再度访问荷兰时在埃伦菲斯特家中遇到弗里德曼一位同事才经提醒知道有这么一回事。经过一番研究,爱因斯坦发现的确是自己的不对。他果然立即给《物理学报》去信收回他早先的评论,承认那是他自己推导中出了错而弗里德曼的解是正确的。

爱因斯坦手写的原稿最后还有一句话,指出弗里德曼的结果仍然不具备物理意义(“to this a physical significance can hardly be ascribed”)。但他随即删掉了这句话,把异议留在了自己的心底。
爱因斯坦1923年写给《物理学报》信件底稿,收回他对弗里德曼论文的批评。手稿显示他删去了他当时依然持有的批评意见。

彼得格勒又变成了列宁格勒。弗里德曼成为那里地球物理天文台台长。1925年7月,他亲自搭乘气球上升到史无前例的7400米高空进行气象测量,可能因此感染了伤寒症(typhoid),于9月16日不治去世。

他年仅37岁。


1919年11月6日,英国王家学会、王家天文学会联合举办盛大晚会,听取爱丁顿汇报他的日全食测量结果。汤姆森爵士(Joseph John Thomson)宣布这是人类思想史上最伟大成就之一。会后,将信将疑的西尔伯斯坦(Ludwig Silberstein)向爱丁顿求证:据说世界上只有三个人懂得广义相对论,而您就是其中之一。爱丁顿沉思未语。西尔伯斯坦赶紧圆场:“您不必谦虚。”爱丁顿说:“正相反,我是在想那第三个人会是谁。”

喜欢促狭的爱丁顿也并没有太离谱。广义相对论数学之复杂让即使是理论物理学家——德西特、弗里德曼是显然的例外——都望而却步,更何况那些需要整晚整晚埋头看星星的天文学家。因此,在相当一段时间,宇宙模型还只是爱因斯坦他们几个人小圈子里面的纸上谈兵。天文学家虽然对德西特宇宙中存在的红移好奇,却还没有精力、能力探究这些不同宇宙模型的孰是孰非。

他们有更迫切的问题需要操心。

尽管在一战前后,天文观测技术已经有了长足的进步,几十年前的大问题却依然如旧:我们看到的银河是宇宙的全部吗,还是天外有天?星云是在银河内部,还是银河外自成一体的“岛屿宇宙”?银河——或宇宙——有多大?

多普勒、哈金斯的贡献既让天文学家兴奋,也让他们尴尬。因为多普勒效应最大的特点是与距离无关。无论光源有多远,只要我们能接收到它发出的光,只要有足够的光强可以辨识光谱,就可以非常准确地测量出光源的(径向)速度。但这个优点同时也是一个非常大的缺点:我们因此无法知道光源的距离。

要想看到整个的宇宙,仅仅有一个测速仪是远远不够的。还必须找到一把能丈量宇宙的尺子。


(待续)


科普

Tuesday, February 12, 2019

宇宙膨胀背后的故事(之四):察颜观色识星移

赫歇尔的儿子约翰·赫歇尔(John Herschel)在他的父亲和姑姑的影响下也成为一位出色的天文学家,是英国王家天文学会的创始人之一并几次担任会长。他子承父业,也热衷于埋头数天上的星星。在现实世界里,他对新发明的照相术发生了浓厚兴趣,精于照相底片的化学。后来流行的行话“负片”(negative)、“正片”(positive)等便是他的首创。

照相机的发明自然也引起了天文爱好者的躁动。在底片上留下星星的倩影成为19世纪中叶有钱有闲阶层的新挑战。这个刚问世、靠玻璃板上涂抹化学试剂摄影的新技术在捕捉微弱的星光上还真是勉为其难。在长达几小时的连续曝光过程中,硕大的望远镜需要平稳地转动,跟踪正在“斗转星移”的目标。摄影者同时还得像狙击手一样盯着目镜监视,时刻调整以确保目标锁定在十字线的中央。

1840年,美国人约翰·杜雷伯(John Draper)成功地拍摄了第一幅月亮照片。1850年,哈佛天文学家邦德(William Bond)拍出了织女星(Vega)——人类第一张太阳以外的恒星照片。到1860年代后期,玻璃底片完成了从湿版到干版的过渡,不再需要抢在试剂干燥之前完成摄影,曝光时间得以大大加长。1880年,约翰·杜雷伯的儿子亨利·杜雷伯(Henry Draper)拍出了第一张星云照片。


古人看星星,除了它们的位置(即所在的星座),只有很少几个特征可以互相比较:大小、亮度、颜色。在照相技术出现之前,这些都只是肉眼观察、记录的结果,带有很强的主观偏见。飘忽不定的地球大气层对星光的干扰也带来更多的不确定因素。

照片上的影像终于让天文学进入了精确、客观测量的新时代。严谨的天文学家在每幅照片上都会记录曝光时所用的望远镜、时间、角度、天气状况等因素,然后依据既定的公式计算、修正测量出的星星大小和亮度。

更大的突破却是来自颜色。

彩虹是常见的自然景象,曾引得无数文人骚客为之感慨抒怀、浪漫想象。彩虹不只是出现在雨后的斜阳照耀,而是在瀑布、水泡、玻璃折射下都能经常看到。早年物理学家——包括英国的虎克(Robert Hooke)——认为这是因为白光通过这些物体时被染上了颜色。

牛顿不满意这个解释。他在1666年进行了系统的科学实验证明并非如此。他的设计相当简单:在一个棱镜把太阳光分离成斑斓的彩虹后,他让分离出的红光光束再通过另一个棱镜,发现出来的依然只有红光——第二个棱镜没能将红光再染上别的颜色。然后,他又让第一个棱镜分离出的所有颜色的光再通过倒过来的第二个棱镜,发现那七彩的光又重新组合,恢复成了白光。这样,他指出颜色是光本身的属性。棱镜不具备染色的功能,只是在改变不同颜色的光的路径,因此可以分离、重组颜色。
牛顿为他的双棱镜实验手绘的设计草图,这里是演示分离出的红光不会再度被第二个棱镜“染色”。

牛顿相信光束是由微小、肉眼不可见的粒子(corpuscle)组成,这些微粒与其它物体一样遵从他发现的动力学定律。他推测光粒子通过棱镜表面时受到了一种力,因此改变了路径。他假设这个力对所有光粒子是一样的,路径扭曲程度便取决于粒子的质量。因此,他认定红光的微粒质量最大,光路被扭曲的程度最小;而紫光则反之。

当然,牛顿看到的分离出的太阳光与我们日常看到的彩虹一样,是一道从红到紫连续变化的亮色,并没有红光、紫光的界别。他把这个分离——“色散”(dispersion)——出来的连续颜色系列叫做“光谱”(spectrum)。参照乐谱中的音符,他大致地划分出七种颜色,相当于我们今天常说的“赤橙黄绿青蓝紫”。

虽然他的双棱镜实验令人信服地确立了颜色是光的属性,他的“微粒说”解释却很快被抛弃。相继观察到的光的衍射、干涉、偏振现象无法用粒子运动解释,因此微粒说被更早由虎克、惠更斯(Christiaan Huygens)等人提出的“波动说”取代。光束与声音、水面涟漪一样是一种波动,光的不同颜色来源于波动的不同频率:红光的频率最低,波长最大;紫光则频率最高,波长最小。


大约150年之后,德国一个玻璃坊工匠弗劳恩霍夫(Joseph von Fraunhofer)注意到他生产的棱镜产生的光谱中有一些细细、不易察觉的黑线。他精益求精地优化工艺,试图消除这些瑕疵。经过不懈的努力,他制作出当时最优质的玻璃,引领德国超越英国成为世界光学仪器中心。但光谱里的那些小细线却依然如故。

弗劳恩霍夫领悟到这不是玻璃的毛病,而也是来自光本身,因为那些黑线在光谱中的位置——也就是频率——非常固定。他把比较明显的一些黑线用字母顺序标识出来,最引人注目的是黄光区有两条相挨着的粗线:“D-双线”。后来他又把望远镜与棱镜结合起来,可以更清晰地观看太阳的光谱,赫然发现其中居然有成百上千条这样的黑线。由此,他发明了光谱仪(spectroscope)。
1987年德国邮政为纪念弗劳恩霍夫诞辰200周年发行的邮票,用的是他当年描绘的太阳光光谱。

弗劳恩霍夫从小是个孤儿,没有系统地接受过正规教育。但他不仅在玻璃工艺上做出了杰出贡献,还成为光学专家。除了光谱仪,他还根据光波的原理发明了“衍射光栅”(diffraction grating),能比棱镜更有效地分离、辨识光谱。遗憾的是,他39岁时就去世,至死没能明白那些黑线是什么。

30多年后,德国海德堡大学的物理学家基尔霍夫(Gustav Kirchhoff)和化学家本生(Robert Bunsen)合作才揭开了这个谜。

早在唐宋年代,中国人已经制作出烟花焰火,增添节日的喜庆。焰火的原理是一些矿物质在受热后会发出不同颜色的光。基尔霍夫和本生发现这些颜色来自矿物质中含有的化学元素。他们花了很大的工夫提纯,然后用本生发明的“本生灯”(Bunsen burner)逐个加热纯化的元素,用光谱仪观察它们炽热时发出的光。

这时他们看到的不是七彩的彩虹,而只是一条条细细的、明亮的线条。令人惊奇的是每种元素有着自己特定的谱线,犹如可辨认的指纹。尤其是金属钠,加热后有两道亮丽的黄色谱线,恰恰就在弗劳恩霍夫的“D-双线”的位置。

基尔霍夫意识到他们看到的亮线与弗劳恩霍夫发现的暗线其实是同一个现象的两面:前者是元素受热时发射的光,后者则是同一种元素从白光中吸收了同样频率的光后留下的“黑影”。因此,无论是看到亮线还是暗线,光谱仪都可以用来识别该元素。一个晚上,他们从实验室看到远处发生火灾,便好奇地将光谱仪对准那火光。果然,他们在光谱中找到钡、锶等元素的“指纹”,正是起火仓库里存有的货物。
基尔霍夫(左)与本生。

在那之后,众多的科学家便将太阳光谱中那些暗线与地球上观察到的元素“指纹”一一对比,很快辨认出太阳上有氢、氧、碳、钠、铁……等元素,与地球上的相应元素并无二致。当一道黄色谱线找不到对应元素时,他们大胆猜测那来自一个太阳上才有的新元素,以希腊文的“太阳”命名为“氦”。十几年后,氦才在地球上被发现,证实这个元素的存在。

于是,天文爱好者又兴致勃勃地把光谱仪连接到望远镜上,要一举探究恒星的构成。微弱的星光被棱镜色散之后就更难以捕捉。但有了用照相机长期曝光的技术之后,这只是一个耐心和技术的问题。

1863年,在30岁时突然变卖纺织家业而投入天文观测的英国人哈金斯(William Huggins)成功拍摄到第一张恒星的光谱照片。1872年,亨利·杜雷伯拍摄到织女星的吸收谱线。及至1880年代,即使是肉眼看起来模糊不清的星云,也在哈金斯、杜雷伯等人的玻璃底片留下了光谱“指纹”。

很快,哈金斯发现遥远恒星的光谱与太阳光谱大同小异,也就是它们的成分对我们来说都不陌生。他兴奋地宣布:“每个星星闪烁的地方,都有太阳系的化学。”(“The chemistry of the solar system prevailed, wherever a star twinkled.”)也许美中不足的是,他没能像氦那样在外太空发现新的未知元素。


1840年代初,奥地利的多普勒(Christian Doppler)也对星星看上去有不同的颜色很感兴趣。他觉得他明白个中缘由,因为他注意到波的频率并不是绝对的,而是会随着观察者与波源的相对速度改变。

1845年,荷兰气象学家巴洛特(Christophorus Buys Ballot)专门请了一个乐队站在行驶中的敞篷火车上吹号,他在站台上听到了“走调”:火车开过来时号声的音调偏高,离去时则偏低,因此证实了这个“多普勒效应”。如果我们注意倾听行驶中的火车拉响的汽笛,或警车的警笛,也能注意到同样的现象。

多普勒认为光作为与声波类似的一种波,也会有同样的效应。他觉得星星应该是都在发同样的白光,不过有些星可能在运动中。如果它们冲着我们过来,光的频率会像号音走调一样移向高频,看起来就会偏蓝。反之,如果星星离我们远去,它就会显得偏红。

可惜的是他忽略了一个细节:星星的光谱与太阳一样是彩虹般的连续谱,其中频率无论是往高(“蓝移”)还是往低(“红移”)移动,整体的色彩不会有多大变化——如果黄光因为红移变成了橙光,原来的绿光就会同时变成黄光补上。

还是基尔霍夫为星星的色调提供了更合理的解释。他发现,只有本生灯烧出来的炽热稀薄气体才会出现分离的谱线。固体、液体甚至密度高的气体加热后发出的都是连续光谱。在不同温度下,光谱会略有不同。温度低时,红色比较显著,温度高时,蓝色、紫色则更醒目。

自古以来,打铁、烧窑等需要高温的工匠都掌握着一手绝活:看火色——看看火中的颜色就能判断出火候,亦即温度。这招之所以好用,基尔霍夫发现是因为“火色”与火焰中的物质无关而完全由温度决定。他把这种热辐射叫做“黑体辐射”(black-body radiation)。

太阳也是这样一个发光的物体。他根据其光谱判断太阳其实是一个温度达几千摄氏度的大火球。同样,我们观察到遥远的恒星呈现出偏红、偏黄、偏蓝的色彩也是因为它们有着不同的表面温度。


其实多普勒最初的想法也并不完全离谱。虽然从连续的光谱的确看不出运动导致的频移,光谱中的那些细细的谱线(“指纹”)却每根都有着确定的频率位置。因为已经可以确信恒星、太阳都是由与地球上相同的元素组成,我们可以比较同一元素的谱线的频率位置,看看来自恒星的谱线是不是带有多普勒效应带来的红移或蓝移。

哈金斯是第一个发现这样的频移的。

自从罗斯伯爵发现涡旋状的星云、康德提出银河是一个旋转中的大盘子后,恒星位置不恒定,而可能是在运动中这一猜想已经不再骇人听闻。现在,光谱线的多普勒效应不仅能让我们确定它们在运动,还能很简单、精确地计算出它们相对我们运动的速度。(这里所说的运动、速度都是“径向”的,也就是星星沿着我们和它的视线上的运动、速度。有些星星也有“横向”的运动,天文学上叫做“自行”(proper motion)。那种运动没有多普勒效应,只能通过相对于其它恒星背景的视差判断。)

巴洛特很容易就听出了火车上号音的变调。但如果他同时在火车上装置某种颜色的灯来观察光的频移,这个实验却会失败。因为多普勒效应中的频移大小取决于火车速度与波速之比。与光速相比,火车的速度微不足道,不可能观察到多普勒效应。

但哈金斯能看到星星光谱中的多普勒效应,说明星星不仅在运动,而且速度很大,能与光速相比而不可忽略。的确,他估算出御夫星(Capella)的速度达每秒30公里,也就是光速的万分之一。(严格来说,如此高速运动的多普勒效应需要做狭义相对论修正,但爱因斯坦还要再等11年后才出生。)

看看漫天的繁星,想象一下它们正在以非常高的速度“疯狂”地奔波着。我们这个宇宙这是怎么啦?

随着越来越多数据的积累,天文学家很快意识到只有很少的星星或星云——比如那个让马里乌斯纳闷的仙女星云——在朝着我们奔来。绝大多数的星星、星云却似乎都在“义无反顾”地背离我们而去:它们的谱线全都呈现出不同程度的红移。

这就十分地诡异了。


(待续)