Sunday, July 8, 2018

捕捉引力波背后的故事(之十八):引力波带来的宇宙声光大秀

人类自古便仰望星空,用肉眼观赏、辨识满天的繁星。伽利略(Galileo Galilei)在十七世纪初率先用自制的望远镜指向天体,大大地扩展了视野。麦克斯韦尔之后,物理学家知道光只是电磁波的一部分,在可见光之外还有着精彩的世界:从低能的射电、微波、红外线到高能的紫外线、X射线、伽玛射线,我们的“眼睛”越睁越大,“看到”的越来越多,对宇宙的认识也越来越全面。但直到2015年9月14日之前,我们还仅限于“仰望”,即依赖于电磁波给我们带来的“视觉”信息。

引力波是一个全新的信息载体。与在时空中传播的电磁波不同,引力波是时空本身的脉动。由于这种波动在意象上与在空气中传播的声波有一些类似之处,人们自然地将引力波与声音做类比。正如韦斯当年领悟的那样,LIGO探测到的引力波频率与他酷爱的钢琴乐声重合。在记者会上,他们也将测得的引力波信号直接播放,称之为“黑洞合并时发出的声音”。

于是,“时空乐章”、“引力波涟漪”、“宇宙回响”等与声音有关的华丽辞藻被普遍用来描述引力波的发现。虽然这只是一个类比,但人类确实是打开了一条新的“听觉”渠道:我们不再只是睁眼仰望星空,也能够同时竖起耳朵聆听天籁之音。

这便是沃格特领衔提交给国家科学基金会的申请中引述马基雅维利的诗句所体现的,LIGO的使命是革命性地“引入一个全新的秩序”。赖茨后来在记者会上稍微低调了一点,指出LIGO的成功完成了“天文学从无声电影到有声电影的过渡”。


比令在1989年开始他的引力波探测时曾向同事保证他不会在看到引力波之前死去。2016年时,101岁的比令又聋又瞎,独自住在养老院里。当后辈带着好消息来看望他时,他似乎短暂地恢复了记忆,喃喃道,“啊,引力波。我已经忘记了这么多事情。”一年后,比令去世。

虽然没到那样的高龄,进入老年的布拉金斯基退休后一直与疾病缠斗,同样挣扎着要活到看到引力波的那一天。得愿后不久,他于2016年3月29日辞世,终年84岁。他在莫斯科大学的团队一直是也继续是LIGO的一支主力部队。

德瑞福也在苏格兰的养老院中颐养天年。他已经完全陷入老年痴呆,浑然不知世事。护士将他推到转播LIGO记者会的电视机前时,似乎看到他的昏昏老眼里闪出一丝光亮。2016年9月,索恩在去欧洲领奖时特意绕道到爱丁堡拜访了德瑞福,居然还交谈了良久。德瑞福的弟弟说那是他少有的神志清醒的一天。索恩倍感欣慰地发现德瑞福明白他们已经成功探测到引力波。两个老人贴心叙旧,共同回忆当年为LIGO奋斗的岁月。

2017年3月7日,德瑞福去世,终年85岁。他的家人将其遗产五十万英镑捐献给格拉斯哥大学,设立了德瑞福奖学金,每年资助一名研究生的学业。


LIGO在2015年9月探测到引力波,经过四个多月的核实才在2016年2月11日宣布。这当然是出于他们的谨慎和负责。他们当时不会想到的是,这段拖延无意中为诺贝尔奖委员会解决了一个棘手的难题。

每年诺贝尔奖的提名截止日是1月31日。LIGO正好错过,无缘2016年的诺贝尔奖。在接下来的一年里,LIGO的成就几乎揽括了科学界所有沾得上边的奖(包括中国的“复旦—中植科学奖”和香港的“邵逸夫奖”)。这些奖项的颁奖对象略有不同,基本上都有韦斯和索恩两员主将,有些包括了德瑞福,有些则包括巴里什,还有的干脆颁发给整个团队。

诺贝尔奖比较死板。当初诺贝尔在设立奖金的遗嘱中规定了几个条件,包括获奖者必须是个人、而且是在世的活人,每项奖的获奖者不得超过三人。这两个条件一直被除和平奖以外的奖项顽固地坚持着,即使其它一些“不方便”的条件(比如获奖的应该是当年或最近的工作)早已被束之高阁。

发现引力波的成就应该获得诺贝尔奖是毫无疑问的理所当然。韦斯、索恩、德瑞福、巴里什四个主要角色如何取舍成三名获奖者却是一个人为的困境。在德瑞福去世之前,有些媒体已经提前为巴里什可能的落选鸣不平,认为他力挽狂澜的壮举和项目管理的卓越不应被忽视。

德瑞福的去世大概让诺贝尔奖委员会成员大大地松了一口气。2017年10月3日,他们顺理成章地宣布将当年物理学奖颁发给韦斯、索恩和巴里什三人。为了突出韦斯在干涉仪设计中的原始贡献,他独自获得一半奖金。索恩与巴里什平分另一半。
韦斯、索恩、巴里什(从右到左)荣获2017年诺贝尔物理学奖。


还在LIGO通过记者会向全世界宣布他们的重大发现之前,他们的两个干涉仪已经分别在2015年10月12日、12月26日两次探测到新的引力波信号。因为需要集中精力查证9月的那第一个信号,这些数据被暂时搁置,直到2016年6月15日才公开。10月12日的信号的统计意义比较弱,没有被正式确认为引力波。12月26日那次则被认定为另一例黑洞的合并。这次是两个分别为14.2和7.5太阳质量的“小”黑洞合并。它们距离也远一些,来自14亿光年之距。因为黑洞的质量比较小,LIGO得以观察到两个黑洞相互绕行27圈的“缓慢”旋进。合并后的黑洞有20.8太阳质量,只有0.9太阳质量被转化为引力波。

捕捉到这个信号之后不久,LIGO的第一次测量运行(O1)也于2016年1月19日结束。两个干涉仪关机下线,进行仪器调试改进。O1只持续了短短的四个月,但已经成果斐然。

经过将近一年的离线调试,原来在灵敏度上稍逊一筹的利文斯顿干涉仪有了显著的提高,反超汉福德。后者的灵敏度没能得到进一步改进,却也有了更好的信噪比。2016年11月30日,第二次测量运行(O2)正式开始。不久,他们便又在2017年1月4日、6月8日两次测得新的黑洞合并所发的引力波信号。

2017年8月1日,意大利的aVirgo终于完成了升级,加入探测行列。8月14日,地球上第一次有三个干涉仪同时探测到引力波,实现了对引力波来源的三点定位。(德国的GEO600因为灵敏度不足,迄今尚未探测到任何引力波。)

韦斯当年为LIGO命名时,曾因为这个名称中含有“天文台”的字眼与天文学界发生冲突,不得不解释他们这个项目并不真的是传统意义的天文台。随着这一系列观测结果的持续出现,他们这时倒已经成为一个名副其实的引力波天文台。与此同时,新闻媒体却已经不再有兴趣跟踪报道这些新发现,引力波已经演变为没有新闻价值的家常便饭。

而当年持怀疑、反对态度的天文学家们也早已捐弃前嫌,进入为了人类科学大事业共同合作的新时期。很快,他们也收获了欣喜的回报。


当我们的耳朵突然听到附近意外的声响时,我们会自觉或不自觉地转头观看,试图用眼睛发现这个声响的来源并获取耳朵无法分辨出的更多信息。LIGO很早就认识到,单独用干涉仪倾听引力波并不全面,也需要同时睁开眼睛,细察双星合并的精彩。

凝听宇宙的干涉仪与我们的耳朵还有一个很相似的地方:可以耳听八方。仰躺在地球表面的干涉仪能够听到来自各个方向的引力波(只是不同方向上的灵敏度略有差异)。相反,我们现有的各种光学、射电、X射线、伽玛射线等电磁波望远镜却也与我们的眼睛类似:只有非常有限的视角,只能在对准光源后才能接收到信号。

因此,干涉仪更适合于最初的发现。当他们“听到”信号后,如果可以指挥其它望远镜“转头”寻找来源,则可能“看到”更多、更详细的信息。

1960年代,美国军方发现他们的间谍卫星有时会遭到为时短促的伽玛射线束“攻击”。经过大概十年的研究才确认这个威胁其实来自宇宙空间,非敌方的人类所为。天文学家猜测那是某些大质量星体甚至黑洞爆炸、碰撞等“宇宙事件”的产物,但苦于无法确证。所能作的只是试图获取更多的信息。

1990年代中期,天文学界开始对偶然发生的伽玛射线、X射线爆发事件进行统一协调的多方位、多渠道观测。地球表面和大气层外的人造卫星上的很多具备远程控制功能的望远镜已经实现联网。一旦某个望远镜接收到不明来源的突发性信号,立即会把坐标自动“群发”给其它伙伴。顿时,世界各地以及外空中的上百架望远镜可以一齐指向那个方向,试图捕捉同一事件的伴随信号。

从一开始,LIGO科学合作组织便加入了这个联网,准备利用他们耳听八方的优势帮助天文学家寻找目标。不过,2015年9月14日的第一个发现来得太突然,这些自动协调的机制尚未到位。冈萨蕾斯等人只好亲自打电话通知天文台的朋友,请他们临时“转头”观测,结果一无所获。随后的几次引力波的发现开始了实时引导天文望远镜的观测,也同样地没有成果。

这其实属于意料之中。干涉仪所发现的五次引力波都来自黑洞的碰撞合并,整个过程始终是在黑洞强大的引力场内进行,没有什么物质——包括电磁辐射——可以逃逸。因此除引力波之外并不能指望有其它的信号可以被观测到。(当然,这并不是说天文学家不需要去尝试,因为新的科学发现往往会出现在意料之外。)

当黑洞的合并已经习以为常后,LIGO的科学家翘首以盼的是能够发现中子星的合并。中子星没有黑洞那么强的引力场,其合并过程会伴随着强大的电磁辐射。虽然合并本身的过程极其短暂、发射的引力波脉冲稍纵即逝,但可见光、伽玛线、X射线等往往是在合并时星体物质高速碰撞、被抛射时和之后才发生,因此时间上有一定迟疑,辐射的过程也比较长,正好给地球上的望远镜提供“转头”寻找的时机。

这个机会终于在2017年8月17日出现。也就是三个干涉仪同时发现黑洞合并的三天后,三剑客又同时获得新的信号。与前五次不同的是,这是人类第一次直接探测到双中子星合并的引力波。

这个信号首先到达意大利的Virgo,然后在22毫秒后来到利文斯顿,再3毫秒后通过汉福德。与黑洞合并时探测到的不到一秒钟的脉冲不同,质量小的中子星合并是一个相对缓慢的过程,探测到的引力波信号持续了约100秒。分析表明这是两个质量稍大于太阳的中子星合并,产生了一个2.7太阳质量的新黑洞。这次合并发生在大约1亿3千万光年的距离,相对来说是比较近的。
LIGO公布的2017年8月17日双中子星合并的基本科学数据。

引力波过去1.74秒后,在地球上空轨道上运行的美国费米伽马射线太空望远镜(Fermi Gamma-ray Space Telescope)探测到一组历时约2秒的伽马射线风暴。

LIGO和费米望远镜都及时发出了预警。在他们联合定位的引导下,地球上多个光学观测组在其后的数小时内集中搜寻,在指定范围内发现了一个新的光源,犹如那里短暂地出现了一颗新的星星——那便是双中子星合并后的残余。位置确定后,地球上大约70个不同的望远镜都瞄准了那颗新星,进行射电、红外、可见光、紫外、X射线、伽玛射线的全方位持续观测。

欧洲南半球天文台(European Southern Observatory)的“非常大望远镜”(Very Large Telescope)连续跟踪观测了12天。双星合并之初,可以观测到相对很强的光亮,最明亮的是在从绿光到橙光的可见光频段。随着时间的流逝,总体光强逐渐减弱,最明亮的区域慢慢地移向能量小的红光、红外。11天后,新星消失,不再能观察到。
“非常大望远镜”对2017年8月17日发现的双中子星合并的11天跟踪测量的紫外、可见光、红外(从左往右)频段光谱。横坐标是波长,纵坐标是亮度。曲线上的数字标注合并后的天数。

10月16日,共囊盛举的世界各地天文学家集体对外公开这一次不寻常的观测,同时发表了几十篇论文,从各种角度报告观测的结果。颇具代表性的是一篇题为《双中子星合并的多信使观测》(Multi-messenger Observations of a Binary Neutron Star Merger)的论文,署名有3千多位共同作者,在天文领域属于绝无仅有。

“多信使”一下子成为时髦的新闻用语。这次观测标志着人类摆脱了“仰望星空”的单一依赖电磁波作为信息载体(信使)的局限,在“看”的同时也能“听”到另一个信使——引力波——带来的消息。这是LIGO所带来的又一个划时代的突破。(比较遗憾的是,在电磁波和引力波之外,这次的合并事件中没有接收到相应的中微子束,因此没能实现更全面的多信使观测。这应该是因为合并时中微子的发射方向没有指向地球。)

双中子星合并的引力波与初始的伽玛射线风暴几乎同时抵达地球,证实了广义相对论中引力波以光速传播的预言。(伽玛射线稍微滞后将近2秒,是因为它们发出的时间上有差异。)这也是我们第一次有确切的证据表明过去观测到的短促伽玛射线“攻击”的确来自双中子星合并。

光学望远镜的测量也揭示了诸多从引力波无法“听到”的信息。通过光谱分析可以知道中子星合并时产生了大量铅、金、铂等重金属元素,解决了天文学中一个历时悠久的疑问。物理学家已经知道,通过恒星内部的热核反应,原始的氢元素能够逐级聚变产生氦、碳、氧等元素。但重金属元素的来源一直无法确定。这次的发现令科学家相信,我们地球上——整个宇宙中——的所有金子,以及制造原子弹的铀和钚、日常电器中不可或缺的稀土元素等等,可能绝大部分都来自远古某些双中子星的合并。

天文学进入了一个新的纪元。


2017年8月25日,双中子星合并发现的11天后,运行了近九个月的O2结束了。LIGO的干涉仪再度下线维修、改进。目前我们还不知道下一轮的测量运行(O3)会在什么时候重新启动,又会带来怎样的惊喜。


(待续)



Thursday, July 5, 2018

捕捉引力波背后的故事(之十七):终识引力波真面目

2015年9月25日,亚利桑那州立大学的物理学家克劳斯(Lawrence Krauss)教授在社交媒体推特(twitter)上冷不丁地发出一条消息,说有传言LIGO已经探测到引力波,如果确实的话会很惊人。克劳斯是著名的科普作家,他在推特上拥有近49万粉丝。
克劳斯在2015年9月25日发的推特。
他没有透露消息的来源。


升级版的aLIGO是在2010年安装完毕的。在这场脱胎换骨中,干涉仪内部的所有仪器被全部拆除,改换成更先进的版本。神奇的是,他们如此之大手术却没有破坏干涉仪长臂中那庞大体积内极高的真空。这个真空状态自1998年形成后就一直持续地维持着。LIGO主任赖茨骄傲地总结道:“我们更换了所有的东西,除了没有的东西。”(We changed everything, except for nothing.)

当初的iLIGO在安装完毕后曾经花了十来年才调试到10-21的设计灵敏度。有了那个摸索过程的基础和经验,aLIGO安装完毕后只用了几个月的时间便超过了那个灵敏度。及至2015年9月,两个干涉仪的灵敏度就都达到iLIGO的3倍。这还没有达到aLIGO的设计目标,但已经是很大的改进。

干涉仪的灵敏度也可以反过来用它所能凝听的距离、体积来表示。iLIGO的灵敏度让它能听到大约6千万光年之内的双中子星碰撞所产生的引力波。这时的aLIGO的侦听距离增大了三倍,达到近2亿光年的距离。在三维宇宙中,距离增加3倍,相应体积便增大27倍。在这个扩大的体积内,有着成千上万的星系,其中可能的双中子星数量大大增加。据理论估算,iLIGO可能每十年能观测到一次双中子星合并,而这时的aLIGO已经能在一年中遇到好几次。

因为泰勒和赫尔斯的发现和其后的大规模观测,天文学家已经较清楚地知道双中子星在星系中存在的密度,因此可以有根据地做出这样的估计。但韦斯、索恩、惠特科姆等人却还抱有更大的希望。如果两个黑洞碰撞合并,因为它们的质量比中子星大得多会产生更强烈得多的引力波信号。因此,干涉仪的探测范围还会更大,有可能听到十几亿光年之外的双黑洞碰撞的回响。

在二十一世纪,物理学家对黑洞的存在已经不再怀疑。但黑洞之所以被冠名以“黑”,是因为它们的引力场如此之强,即使以光速运动的电磁辐射也无法逃逸。因此我们没法直接观察到黑洞,只能通过其对周边星球、宇宙物质的引力作用而推测。虽然黑洞的存在本身没有疑问,两个黑洞是否会彼此接近到形成双黑洞,乃至加速接近、碰撞而合并,却依然是个只存在于超级计算机模拟计算之中的壮丽。

在LIGO一帆风顺的同时,Virgo的升级过程却陷入困境,无法按时完成。到2015年秋季,LIGO不再等待Virgo的完工,先行用自己的两个干涉仪进入实际观测。也就是说,干涉仪的运作将从“工程调试运行”(engineering run)转换为实际的“观测运行”(observing run)状态。按照计划,第一个观测运行期(O1)在2015年9月15日那个星期一开始。

9月14日的星期天晚上,两个干涉仪遭遇分别来自太平洋和墨西哥海湾的风暴影响,在试图进入锁定状态时困难重重。在工作人员的持续努力下,汉福德的干涉仪当地半夜时分率先实现了锁定。随后,利文斯顿的干涉仪也在当地临晨4点之前进入了锁定。疲惫无比的工作人员长舒一口气。大部分人回家了,留守值班的也各自找安静的所在休憩。干涉仪自行维持着锁定状态,静静地等待来自宇宙的任何微扰。“O1”开始了。

韦斯正在与家人度假。他那天晚上一直在计算机上远距离关注着进展,这时也听从妻子的劝告上床休息。

大约一小时之后,一丝引力波的涟漪悄无声息地穿过地球,在当地时间4点50分先到达利文斯顿,几毫秒后又经过汉福德(当地时间2点50)。不到一秒钟后,它已经消失得无影无踪。地球上没有人觉察出它的到来和离去,只是两个干涉仪的数据记录中都留下了短暂的一串小脉冲。


欧洲这时是星期一的上午,人们在正常地上班。信号过去4分钟后,在德国汉诺威工作的意大利籍博士后德拉戈(Marco Drago)于当地时间上午11点54分收到一份监控软件自动产生的电子邮件,提示他这个信号的出现。他的第一反应便是这个波形太像引力波了,大概又是一次“人为注入”的演习。
图中顶排是汉福德(左)和利文斯顿(右)干涉仪在2015年9月14日测得的引力波信号。右上图的利文斯顿信号上也重叠了修正时间差的汉福德的数据,显示二者的重合度。第二行的图是去除背景噪音后的观测结果与理论模拟的黑洞合并过程产生引力波的比较。第三行图显示引力波信号中所含的背景噪音部分(上两行数据之差)。最底一行显示引力波频率和强度随时间的演变。
不知是有意还是碰巧,LIGO过去两次有影响的人为注入演习——“秋分”和“大狗”——都发生在9月份。这次很可能又是故伎重演。但德拉戈和他在德国的同事都觉得太过蹊跷。aLIGO的升级刚刚完成,仅仅几小时前才勉强实现锁定。人为注入的演习不可能这么快就能实施。

他们立即向美国的干涉仪控制室打电话询问,那边依然是黎明前的寂静。汉福德那里没人接电话,利文斯顿值班人员说一切正常,他们没有在做什么调试。德拉戈再也按耐不住。他发出一份简短的邮件,提醒LIGO科学合作组织成员他的发现。此时信号刚刚过去一个小时。

惠特科姆早就计划好9月15日从加州理工学院退休。随着aLIGO进入实际观测,他在这里的使命也已基本完成。但他也应诺如果干涉仪探测到有意义的数据,他会回来协助把关,负责随后的检验、核实工作。这天晚上,退休前夕的惠特科姆睡不好觉,早上4点就起来查看邮件。看到德拉戈的信件后,他立即告知妻子:他的退休计划至少在未来几个月里是泡汤了。

接下来的一整天LIGO科学合作组织内部有点人心惶惶,大家都在互相打听是否有过人为注入的演习。只有担任组织发言人的冈萨雷斯(Gabriela Gonzalez)清楚这个答案,因为演习必须由她拍板。她看到德拉戈的邮件时百感交集,知道这非常可能就是他们梦寐以求的天籁之音。

只是她还不能暴露真相,而当务之急却是要立即补救德拉戈捅出的大娄子。一时激动中的德拉戈整个忘了他们预习、操练过的工作程序,他把邮件群发到LIGO内部好几个人员广泛的邮件组。冈萨雷斯作为邮件组的管理人,成功地拦截了德拉戈发给所有人的那一份。但其他邮件组中很多“不相关”人员已经收到了邮件。

9月16日,冈萨雷斯、赖茨与其他几位高层领导联名给整个组织发送了一份措词严肃的信件,提醒大家这个时候最最重要的是严格对外保密,不得提前泄露信息导致误会。

亡羊补牢显然已经晚了。九天后,克劳斯便发出了他的推特。随后,冈萨雷斯的电话被闻风而来的记者打爆。她只能以官腔套话应付,同时在内部颁布禁言令,禁止回应、评论克劳斯的消息或在社交媒体谈论此事。希望克劳斯的捕风捉影能够自生自灭。

在惠特科姆的领导下,负责核查数据的人员已经按照既定程序按部就班地排查地震、飓风、陨石、风暴等等一切可能的随机噪音源。他们果然在国际气候数据库中发现西非的布基纳法索在同一时间有过一次异常强大的雷电袭击。深度数据分析表明该电击事件距离太远,无法震动美国干涉仪的悬镜。

但惠特科姆更为忧虑的是人为的因素:既然他们可以设计出瞒天过海的人为注入手段,难道他们团队中那么多聪明绝顶的年轻人不会有人动同样的心思以促狭?会不会有人离开项目后心存不满而故意捣乱?甚至,有没有可能系统被外面的黑客打入?看到他几乎成为偏执狂的状态,同事安慰他道,如果黑客中真有人能干出这么漂亮的捣蛋,那本身也该值得赢个诺贝尔奖了。

一直到接近年底的三个月后,他们终于确定这个信号的真实。


过去二三十年里,当实验物理学家兢兢业业地设计、制作、调试激光干涉仪时,只擅长“纸上谈兵”的理论物理学家也没有袖手旁观。他们利用威力越来越强的超级计算机对各种可能的引力波源进行了全面、详细的模拟计算。仅仅是两个星球碰撞合并就会有几十万种不同组合:不同质量的黑洞碰撞、不同质量的中子星碰撞、不同质量的黑洞与中子星碰撞、碰撞之前不同的初始条件、碰撞之后合并星球的不同质量、它们与地球距离的不同远近、轨道相对地球的不同角度……每一种情形会产生稍微不同的引力波波形,犹如每个事件有着独特的指纹。他们建造了一个全面的引力波波形数据库,一旦测量到信号便可以按图索骥。

与2015年9月14日测得的信号最符合的是两个黑洞的碰撞,其中一个质量是太阳的36倍,另一个则是29太阳质量。二者合并之后,产生了一个62太阳质量的大黑洞。前后所差(36+29-62)的3个太阳质量便全都被转换为引力波的能量,爆发性地向整个宇宙激荡。测量到的信号与理论预测非常准确的高度契合也为信号的真实性提供了更大的信心。

我们的太阳每秒钟释放的能量是其本身一个太阳质量的一万亿之一的十亿分之二。这“区区”一点能量已经足以为地球上的生物提供合适的光亮和温暖。这次黑洞的合并是三倍于太阳质量的能量在几微秒内的释放,真可谓“惊天动地”。或者说,这个瞬时释放的能量是宇宙中所有恒星发光的能量总和的十倍还多。因此,这也是人类所确知的除了宇宙大爆炸之外最剧烈的能量释放事件。

这两个黑洞质量如此之大,它们碰撞释放的能量如此之强,以至于它们虽然相距地球达13亿光年之远,也被LIGO的激光干涉仪捕捉到了。

LIGO所测到的还不只是那一瞬间的辉煌,而是包括了两个黑洞碰撞前最后的四圈公转,以及合并后新黑洞的身影。虽然这整个过程只持续了大约0.2秒,引力波的波形却提供了一个栩栩如生的图景:信号伊始时,两个黑洞相距大约与它们自身大小5倍的距离,有着三分之一光速的相对速度。它们像交谊舞的舞伴相拥旋转了四圈,在信号中表现为8个近乎标准的周期。这个阶段叫做“旋进”(inspiral),其间黑洞之间距离越来越小、相对速度越来越大,测得的引力波的振幅也随之增大、频率升高,犹如小鸟的啁啾(chirp)。然后,黑洞接近到它们自身大小的距离,相对速度达到接近百分之六十的光速。这时它们轰然合并(merger),引力波的振幅达到最高峰。随后,如同被突然打击了一下的锣鼓,合并之后的大黑洞还会发出一小段急剧减弱引力波信号,叫做“铃宕”(ringdown)过程。最后,一切恢复静寂,仿佛什么也没有发生过。
2015年9月14日汉福德测得的(去除背景噪音后)引力波信号(灰线)与理论计算(红线)的对比。上图显示两个黑洞接近、合并和铃宕的整个过程。下图是相应的两个黑洞之间的距离(黑线,右边坐标轴)和相对速度(绿线,左边坐标轴)。
在宇宙空间以光速传播了15亿年后,这个引力波终于来到地球。她只剩下10^-21级别的微弱荡漾,却依然保留着这些细节供我们回放远古的历史。


LIGO的论文于2016年1月21日送交《物理评论快报》。期刊事先已经得到讯息,接到稿件后立即优先安排同行评议。1月27日,匿名的审稿人便通过了审阅。1月31日,稍经修改后的定稿送达期刊,排定为2月11日正式发表。
发表于《物理评论快报》的发现引力波的论文第一页。
《物理评论快报》是物理学界最为引人注目的科研期刊。作为“快报”,其宗旨是迅速、简洁地发表重大突破性的成果。发表的文章篇幅一般限制在4页之内。LIGO这篇里程碑式的论文显然篇幅过长,共有16页。其中满满5页却全都是作者和所属科研单位的名单——共有1011名作者,代表着16个国家的133个大学、机构。尽管这次探测是在Virgo和GEO600缺席(前者因为升级尚未完成;后者则当时未处于观测状态,也不具备需要的灵敏度)的情况下由LIGO的两个干涉仪独立完成的,论文作者还是根据事先的合作协议包括了所有的有关人员。

出于韦伯的原罪和BICEP2的乌龙,LIGO领导层坚持必须在同行评议通过之后才能公开这个结果。他们同时也知道,随着时间的拖长,保密会越来越困难。2016年1月11日,克劳斯又发出一份推特,声称他有了新的消息源,旁证他三个多月前发的探测到引力波的消息之真实。物理学界也已经沸沸扬扬,消息、传闻、猜测不胫而走。

众人翘首以盼的记者会终于在2016年2月11日召开。《物理评论快报》配合行动,在记者会同时将论文在网站上推出。他们在头天晚上特地将原有的4个网站服务器增加到6个。但几分钟之内还是因为过多的流量而集体宕机。他们不得不临时再增加10个服务器。

赖茨、冈萨雷斯、韦斯、索恩相继在会上介绍了引力波的发现及其意义。赖茨直截了当地宣布,“女士们、先生们:我们已经探测到了引力波。我们做到了!”
2016年2月11日宣布探测到引力波的记者会主席台上:赖茨、冈萨雷斯、韦斯和索恩(从左到右)。
这还不仅是人类第一次直接探测到引力波,而且也是第一次与黑洞最真切的亲密接触。虽然物理学家对黑洞的存在已不再存疑,对它们的了解却还是非常之少。他们猜测宇宙中存在两种不同来源的黑洞:其一是大型星系——比如我们的银河系——的中心存在的巨型黑洞,它们的引力场维系、携带着整个星系在广宇中漫游。另一类则是由大质量的恒星在核燃料耗尽后崩塌而成,是白矮星、中子星的同袍大哥。因为恒星内部热核反应速度与它的大小、质量息息相关,一般认为恒星不可能长得太大。它们塌陷后形成的黑洞应该只是太阳质量的十几倍。

LIGO的第一个实测结果便揭示了29倍、36倍、62倍太阳质量的“大”黑洞的存在,超越了原先的想象。它更第一次证明了黑洞双星体系的存在以及它们碰撞合并的可能,进一步丰富了天文学的认知。

在描述了这些划时代意义的重大发现之后,冈萨雷斯自信地预言,这还只是LIGO干涉仪探测到的第一个信号。今后,他们一定会持续有新的发现。她没有透露的是,其实更多的信号当时已经被探测到,只是尚未通过他们严格的鉴定程序,因此还没到能够公开的时机。


(待续)


科普